
1

GPGPU Computing: the GPGPU Computing: the
multi/many core computing eramulti/many core computing era

Dipartimento di Matematica e Informatica

Corso di Laurea Magistrale in
Informatica

Osvaldo Gervasi

ogervasi@computer.org

Sistemi Operativi e Reti

2

Outline

● Introduction
● General Purpose GPU Computing
● GPU and CPU evolution
● OpenCL: a standard for programming

heterogeneous devices
● A case study: Advanced Encryption Standard

(AES)
● Scheduling issues

Moore's law

Source: Wikipedia

GPGPU Computing

● GPU computing or GPGPU “is the use of a
GPU (graphics processing unit) to carry on
general purpose scientific and engineering
computing” [Nvidia].

Sapphire ATI Radeon HD 4550
GPU

Nvidia TESLA GPU

Heterogeneous Computing
● Heterogeneous Computing is the

transparent use of all computational
devices to carry out general purpose
scientific and engineering computing.

The Arndale Board based on ARM Cortex-A15
with Mali-T604 Samsung Exynos 5250

development platform

Very promising
architecture for
hererogeneous

computing: it is built
on 32nm low-power

HKMG (High-K
Metal Gate), and

features a dual-core
1.7GHz mobile CPU

built on ARM®
Cortex™-A15

architecture plus an
integrated ARM

Mali™-T604 GPU for
increased

performance density
and energy efficiency

Android
and

Ubuntu
support

The future of Super Computing
Centers: the MontBlanc EU project

● Heterogeneous Computing and minimization of power
consumption: the new HPC Center of the future!

MontBlanc
selected the

Samsung
Exynos 5

Processors

http://www.montblanc-project.eu

NVIDIA Tegra

Quad-core NVIDIA Tegra T3 based Embedded Toradex Colibri T30 Computer On Module,
announced on January 31, 2012. The cores are ARM Cortex-A9. The GPU is a 520 ULP GeForce.

Audi had selected the Tegra T3 processor for its in-vehicle infotainment systems and digital
instruments display. The processor has been integrated into Audi's entire line of vehicles
worldwide, since 2013. The latest versions of the Tegra (K1 and X1) are revealing extremely
interesting capabilities for developing self-driving cars.

Linux
support:
Linux for

Tegra
(L4T)

General Purpose GPU
Computing

● GPUs are:
– cheap and powerful
– ready to use
– highly parallel (thousands of cores)
– suitable for SIMD applications

● SIMD architectures may help solving a large set of
computational problems:
– Data Mining
– Cryptography
– Earth sciences
– Montecarlo simulations
– Astrophysics ….

GPU evolution vs. CPU
evolution

GPUs

● GPUs are low cost devices available on the
market

● Incredible performances
● Very fast developments
● SIMD architecture (the same as vector

computers)
● Several problems are suitable to be solved

using a SIMD approach

Applications on

● Criptography
● Linear Algebra
● Data mining
● Life sciences
● Scientific computing
● Signal theory
● Video processing

Computational Graphics

Formal Definition

The production of bitmap images based on data
acquired from an external source or computed by
means of a computational model

Phases
● Definition of the objects in the scene
● Image rendering

Graphic Pipeline
● Set of operations for the graphic rendering

Rendering operations
● Transfer of the scene description: the set of vertex

defining the objects, the data associated to the scene
illumination, the textures, the observer's point of view.

● Vertex transformations: rotations, scaling and objects'
translation

● Clipping: elimination of the objects or parts of them not
visible from the observer's point of view.

● Lighting and shading: evaluation of the interactions of the
light sources with the shapes, evaluating their shadowing.

● Rasterization: generation of the bitmap image. 3D
coordinates are transformed in 2D coordinates. Textures
and other graphic effects are also applied.

GPU's evolution
● The Graphic Processing Unit is the device devoted to the carry out

the rendering in the modern video boards

● 1980: the first video chips with limited functions without 2D graphic
capabilities

● 1985: the graphic chips were similar to CPUs, with some
modifications (design and ISA). Expensive solution for promoting
CAD applications.

● 1990: graphic chips integrated, dedicated and programmable (lower
costs)

● Starting from 1995, 3D graphics performance issues emerged
thanks to the success of video games.

– Integrated graphic chips for 3D acceleration

– The OpenGL and DirectX specifications were released, hiding
the complexity of programming 3D graphics accelerators

– The graphic pipeline started to be executed in the GPU

GPU's evolution
● In 2000 the shading operations (ability to perform

operations which implement the graphic pipeline) are
included in the GPU capabilities.

 Types of shader:
– Vertex shading: manages and transforms the vertex positions

in an object

– Pixel or fragment shading: manages the image pixels,
enabling the texture mapping

– Geometrical shading: starting from the vertex of a given
object builds more complex objects.

● Shading capabilities became programmable
– each shader were executed on dedicated units

– GPUs became flexible almost like CPUs

GPU's evolution

● The first General Purpose GPU Computing
projects appear, which utilize the shading
units on the vertices.

● The first examples were based on OpenGL
APIs to define shaders on vertices which
mapped the parallel general purpose program.

● The problem of load balancing the specialized
shader units appear

GPU's evolution
● In 2005 the Unified Shader Model is introduced:

the various types of shaders are defined using
a common set of APIs.

● The compute units are all identical.
● In 2007 the concept of General Purpose GPU

became a reality and was fully implemented:
– NVIDIA released Compute Unified Device

Architecture (CUDA)

– AMD released Brook+
– These frameworks allow to use the compute

devices of the GPU without using graphic APIs.

The multicore era

● In the same years (2005-2007) CPUs
became multicore

Intel Yonah (Core Duo)
low-power dual core processor,
introduced on January 2006
Intel Core i7-3920XM Processor
Extreme Edition has 6 cores/12
threads (Q4'12).

AMD Opteron 2212 introduced in
August 2006. The first AMD dual
core (Opteron 875) was released on
April 2005.
AMD Opteron 6366 HE (Q4'12) has
16 cores and high energy efficiency.

Transparent programming
of heterogeneous devices

● In 2008 Khronos Compute Working Group released
the Open Computing Language (OpenCL)

OpenCL is the first open, royalty-free standard for
cross-platform, parallel programming of modern
processors found in personal computers, servers and
hand-held/embedded devices. [Khronos].

Computer architectures

● SISD Single instruction on Single Data

 (es. Architetture Von Neumann tradizionale)
● SIMD Single instruction on Multiple Data

(es.Processori vettoriali)
● MISD Multiple instruction on Single Data

(es. Controller di volo dello Space Shuttle)
● MIMD Multiple instruction on Multiple Data

(es. architetture moderne multicore: Xeon Clovertown)

Flynn taxonomy

SIMD

● Executes a single instruction set on different sets of data
utilizing several computational units at the same time

● Instruction fetch and decode occur only once

● There is a single control unit (CU) which manages the
instruction flow of a given program

Vector Processors: computational units which, after the
instruction fetch and decode, execute it on the data stored in
the vector registers. The load-store unit moves the data from
the central memory to the vector registers and vice-versa

MIMD

● Executes different instructions simultaneously
● Each processor has its own CU
● Each processor may execute a task or part of it

GPU architecture

● GPU components:
– Host interface: connects the device via PCIe bus

to the Host and manages communications
(instructions and data)

– Scalable Processor Array (SPA) execute the
programmable operations using the
(programmable) Texture Processor Cluster (TPC).

– Video RAM

NVIDIA G80 (2007)

Nvidia G80
● TPC contains: Geometry controller, two Streaming

Multiprocessors (SM), Texture Unit and Streaming
Multiprocessor Controller (SMC)

● In particular a SM contains:
– MT unit: multithreded instruction fetch and issue unit

– 8 Streaming Processor (SP): scalar computational units

– 2 Special Function Unit: used for calculating transcendental
functions

– Cache of instructions

– Cache for constant memory

– Shared memory (16KB)

– 8192 registers (32 bit)

Nvidia G80

Texture Processor Cluster in chipset G80 and GT200

Vnidia G80

Nvidia G80

● VRAM or global memory: 80 GB/s.
– Max dimension: 512 MB

● Shared memory: 16 KB (1KB blocks) 400 times
faster then VRAM.

● Registers or private memory: 600 times faster
than VRAM

Nvidia Fermi 2011

Nvidia architecture

For details: http://www.nvidia.com/content/PDF/fermi_white_papers/

NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

Instructions execution

● The instruction execution is organized in Threads.
● Each SM creates, manages, schedules and executes threads in

groups of 32 threads named wraps.
● The threads of the same wrap start from the same program address

but evolve independently
● The maximum in efficiency occurs when all threads of a wrap have the

same path (no branch).
● Nvidia calls such architecture SIMT (Single Instruction Multiple Thread)

Details in OpenCL Programming Guide for the CUDA Architecture vers
3.1.

OpenCL by Kronos Group

● Multi/Many Core Heterogeneous Computing Standard

● Runs on several devices (CPU, GPU, DSP, etc)

● Cross vendor (nVidia, AMD, Intel, etc)

● Portable (Linux, Windows, MacOS)

OpenCL architecture

● Platform model: abstraction of computing devices
managed by a single host

● Execution model: defines the instructions set to be
executed by the OpenCL devices (kernel) and the
instructions initializing and controlling the kernels'
execution (host program).

● Memory model: defines the memory objects, types of
memory and how the host and the devices access them.

● Programming model: defines the type of parallel
execution performed (on data or on tasks).

● Framework model: set of APIs and C99 extensions to
implement host and kernel programs.

The Platform model

The platform model defines the roles of the host
and the devices and provides an abstract hardware
model for devices

The execution model

● Host program: set of instructions which initialize
and manage the execution environment of the
Compute Device

● Kernel program: set of instructions executed by
the Compute Devices

● The Host prepares the various kernels' execution
● Each Compute Device executes the kernel
● Calculations are made by the Work-items (which

are grouped in Work-groups) each work item
executes the same program on different data

The memory model
workgroup 1 workgroup N

Work-item scope

Work-group scope

Kernel scope

The Framework model

● Extensions to C99:
– Vector data type
– Image data type
– Conformance to the IEEE-754 - IEEE Standard

for Binary Floating-Point Arithmetic (ANSI/IEEE
Std 754-1985)

– Memory objects
● Limitations respect C99:

– No recursion
– No standard libraries

A case study: AES
● The Advanced Encryption Standard (AES) algorithm

plays a big role in the current encryption
communications and security technologies.

● Standard FIPS-197

● The algorithm has been developed by Joan Daemen
and Vincent Rijmen that submitted it with the ”Rindael”
codename.

● The algorithm is symmetric, iterate, block based.

● Data blocks of 128 bit, Keys of 128, 192 or 256 bits.

● Due to its characteristics, it can greatly benefit from a
parallel implementation and in particular from a GPU
implementation.

The AES algorithm

State = input

AddRoundKey (State , RoundKey [0])

for r = 1 to rounds−1

 SubBytes (State)

 ShiftRows (State)
 MixColumns (State)

 AddRoundKey (State , RoundKey [r])

end

SubBytes (State)

ShiftRows (State)

AddRoundKey (State , RoundKey [rounds])

output = State

each byte of the state is combined
with the round key using bitwise
XOR

a nonlinear substitution step where each byte is
replaced with another according to a lookup table

a mixing operation which operates on the columns of the state,
 combining the four bytes in each column

a transposition step where each row of the state is shifted
cyclically a certain number of steps.

each byte of the state is combined
with the round key using bitwise
XOR

a nonlinear substitution step where each byte is
replaced with another according to a lookup table

each byte of the state is combined
with the round key using bitwise
XOR

a transposition step where each row of the state is
shifted cyclically a certain number of steps.

Implementation

● Read input file (plain text or ciphered)
● Read AES parameters
● Transfer memory objects to device global memory
● Key expansion
● Perform kernel on the OpenCl device
● Transfer memory objects from device global

memory

Performance tests
● Hardware description

– ATI Firestream 9270 (vendor implementation of OpenCL)

– Nvidia GeForce 8600 GT (vendor implementation of OpenCL)

– CPU Intel Duo E8500 (AMD OpenCL driver)
Device ATI RV770
CL_DEVICE_TYPE: CL_DEVICE_TYPE_GPU
CL_DEVICE_MAX_COMPUTE_UNITS: 10
CL_DEVICE_MAX_WORK_ITEM_SIZES: 256 / 256 / 256
CL_DEVICE_MAX_WORK_GROUP_SIZE: 256
CL_DEVICE_MAX_CLOCK_FREQUENCY: 750 MHz
CL_DEVICE_IMAGE_SUPPORT: 0
CL_DEVICE_GLOBAL_MEM_SIZE: 512 MByte
CL_DEVICE_LOCAL_MEM_SIZE: 16 KByte
CL_DEVICE_MAX_MEM_ALLOC_SIZE: 256 Mbyte
CL_DEVICE_QUEUE_PROPERTIES:
CL_QUEUE_PROFILING_ENABLE

Device Intel(R) Core(TM)2 Duo CPU E8500 @ 3.16GHz
CL_DEVICE_TYPE: CL_DEVICE_TYPE_CPU
CL_DEVICE_MAX_COMPUTE_UNITS: 2
CL_DEVICE_MAX_WORK_ITEM_SIZES: 1024 / 1024 /
1024
CL_DEVICE_MAX_WORK_GROUP_SIZE: 1024
CL_DEVICE_MAX_CLOCK_FREQUENCY: 3166 MHz
CL_DEVICE_IMAGE_SUPPORT: 0
CL_DEVICE_GLOBAL_MEM_SIZE: 1024 MByte
CL_DEVICE_LOCAL_MEM_SIZE: 32 KByte
CL_DEVICE_MAX_MEM_ALLOC_SIZE: 512 MByte
CL_DEVICE_QUEUE_PROPERTIES:
CL_QUEUE_PROFILING_ENABLE

Device GeForce 8600 GT
CL_DEVICE_TYPE:
CL_DEVICE_TYPE_GPU
CL_DEVICE_MAX_COMPUTE_UNITS: 4
CL_DEVICE_MAX_WORK_ITEM_SIZES:
512 / 512 / 64
CL_DEVICE_MAX_WORK_GROUP_SIZE:
512
CL_DEVICE_MAX_CLOCK_FREQUENCY:
1188 MHz
CL_DEVICE_IMAGE_SUPPORT: 1
CL_DEVICE_GLOBAL_MEM_SIZE: 255
MByte
CL_DEVICE_LOCAL_MEM_SIZE: 16
KByte
CL_DEVICE_QUEUE_PROPERTIES:
CL_QUEUE_PROFILING_ENABLE

Performance tests

Performance tests

Ignoring the time spent to copy data in memory

AES performance tests
Including the time spent to copy data in memory

AES performance tests

OpenSSL library

● FLOSS Security since 1998
● SSL TSL Tookit
● Projects based on openssl:

– Apache (mod_ssl)

– OpenVPN

– SSH

 …..

An OpenSSL Engine based on OpenCL

has been created

Performance tests

● The performance tests have been carried out using the
speed benchmark tool distributed with the openssl
library.

● We used the following hardware:
– Intel T7300 Core 2 Duo a 2.00GHz, 2 GB RAM DDR2

– Intel i7 870 Quad Core (Hyperthreading) 3.0GHz, 4 GB di
RAM DDR3

– Nvidia GTX 580 (16 Compute Units) 772MHz (512 Processing
Element or Stream Processors at 1.5GHz) 1.5 GB VRAM
DDR5

– Two versions of the algorithm have been impleted: Sbox
defined in the Constant Memory and the same installed on the
Global Memory.

Performance tests

Data processed as a function of the packet size

Performance tests

Speed-up of the same GPU running on 2 separate CPUs

Performance tests
Measure of the data transfer from the host memory (RAM) to the device memory (VRAM) and vice-versa:

This is a measure of the overhead of the memory transfer

Performance tests

Speed-up of two variants of the algorithm

(Sbox defined in Constant Memory or in Global memory)

Scheduling issues

● The impressive amount of resources available
through the GPGPU approach addresses important
issues related to the efficiency of scheduling of
modern operating systems in hybrid architectures.

● Usually it is up to the user decide the type of device
to use. This is resulting in an inefficient or
inappropriate scheduling process and to a not
optimized usage of hardware resources.

● We are studying an H-system simulator to test
scheduling algorithms for hybrid systems.

The simulator HPSim

● The model aims to simulate a H-system
composed by:
– a set of processors (CPUs) and graphics cards

(GPUs) used as compute units to execute
heterogeneous jobs

– a classifier selecting the type of compute device
(CPU or GPU)

– a scheduler which implements the policy to be
evaluated.

The simulator HPSim

● The proposed CPU-GPU simulation model is
defined in terms of:
– a set of state variables describing the system

– Devices
– Jobs
– Queues
– Scheduler

– a state transition function which determines its
progression through a finite set of discrete events

The simulator HPSim
● The simulator provides the following

features:
– Creation of the user-specified hardware in terms of

number of CPUs and GPUs.

– Generation of the system load, setting the number of jobs.

– Tuning of the inter-arrival Job time.

– Selection of the Job composition. It allows to specify the
probability to generate a given number of Realtime, GPU
User and CPU User Job.

– Setting Classifier simulation.

– Selection of qt strategy.

The simulator HPSim
● We are focusing our work on three main aspects

– We implemented a simple use-case considering a
single non-preemptive priority queue. We are
working to increase the possible cases.

– We are carrying out a study of inter-arrival of real
systems and the implementation of the linux
scheduler (CFS) to validate the simulator.

– We are adding new features to the simulator:
– New scheduling policies
– Implementation of a graphic interface
– Automatic tools for the generation of charts for the analysis of the

performance of the scheduling strategies.

57
57

Parallel computingParallel computing

 Parallel Computing is a form of computation in
which many calculations are carried out
simultaneously, operating on the principle that
large problems can often be divided into smaller
ones, which are then solved concurrently (i.e. in
parallel)

 The degree of parallelism that can be achieved is
dependent on the inherent nature of the problem
at hand, and the skill of the algorithm or
software designer is to identify the forms of
parallelism present in the underlying problem.

58
58

Multiplication of the elements of two Multiplication of the elements of two
arraysarrays

 We carry out the multiplication of the elements of two vectors A
and B, each with N elements, storing the result of each multiply
in the corresponding array C

59
59

Filtering a series of images using FFTFiltering a series of images using FFT

 There is an high task parallelism on a series of tasks operating
together in a pipeline to compute the overall result

60
60

Finding the occurrencies of a string in Finding the occurrencies of a string in
a texta text

 We assume that the text body has been already parset in a set of
N words. We divide the task of comparing the string against the
N potential matches into N comparisons (i.e.: tasks), where each
string of characters is matched against the text string.

61
61

Finding the occurrencies of a string in Finding the occurrencies of a string in
a texta text

 There is even further parallelism within single comparison task,
where a matching on a character-by-character basis presents a
finer-grained degree of parallelism. We observe both data-level
parallelism and task-level parallelism.

 Once the number of matches is determined, we need to
accumulate them to determine the total number of occurrences.
We can again exploit the parallelism in the “reduction tree”
(required logN steps).

62
62

ConcurrencyConcurrency

 Concurrency is concerned with two or more
activities happening at the same time.

 We find concurrency in the real word every
time we are thinking to something while doing
something else with one's hands.

 When talking about concurrency in computer
programming, we mean a single system
performing multiple tasks independently.

 Although it is possible that concurrent tasks
may be executed at the same time (i.e. in
parallel) this is not a requirement.

63
63

 Parallelism is concerned with running two or
more activities in parallel with the explicit goal
of increasing the overall performances.

 Parallel programs must be concurrent, but
concurrent programs need not be parallel.

ParallelismParallelism

64
64

ThreadsThreads

 A running program may consist of multiple
sub-programs that maintain their own
independent control flow and that are allowed
to run concurrently. These subprograms are
defined as threads.

 Communication between threads is via
updates and access to memory appearing in
the same address space.

 Each thread has its own pool of local memory
(variables), but all threads see the same set of
 global variables.

 A simple analogy may be the main program
that includes a set of subroutines

65
65

ThreadsThreads

 Threads communicate with each other through
global memory. This can require
synchronization constructs to ensure that
more than one thread is not updating the
same global address.

 A memory consistency model is defined to
manage load and store ordering.

 Mechanisms such as locks/semaphores are
commonly used to control access to shared
memory that is accessed by multiple tasks.

 There is a significant cost to supporting a fully
consistent shared memory model in hardware.
Shared buses become bottlenecks in the
design.

66
66

Message-passing communicationMessage-passing communication

 The message-passing communication model
enables explicit intercommunication of a set of
concurrent tasks that may use memory during
computation.

 Tasks exchange data through communication
by sending and receiving explicit messages.

 Data transfer usually requires cooperative
operations to be performed by each process.
For example, a send operation must have a
matching receive operation.

 The programmer is responsible for explicitly
managing communications between tasks.

67
67

Different Grains of ParallelismDifferent Grains of Parallelism

 In parallel computing, granularity is a measure
of the ratio of computation to communication.

 Periods of computation are typically separated
from periods of communication by
synchronization events.

 The grain of the parallelism is constrained by
the inherent characteristics of the algorithms
constituting the application.

 It is important that the parallel programmer
selects the right granularity in order to rip the
full benefits of the underlying platform,
because choosing the right grain size can help
to expose additional degree of parallelism.

68
68

Data sharing and synchronizationData sharing and synchronization

 If two applications do not share any data, they
can run concurrently and even in parallel.

 If halfway through the execution of one
application is generated a result that will be
subsequently rwquired by the second
application, then we have to introduce some
form of synchronization into the system, and
parallel execution becomes impossible.

 When running concurrent software data
sharing and synchronization play a critical
role.

 Explicit synchronization primitives such as
barriers or locks may be used.

69
69

The OpenCL specificationThe OpenCL specification

 The OpenCL specification is defined in 4 parts,
called models:
— Platform model: specifies that there is one

processor coordinating execution (the host) and
one or more processors capable of executing
OpenCL C code (the devices). It defines an
abstract hardware model that is used by
programmers when writing OpenCL C functions
(called kernels) the execute on the devices.

— Execution model: defines how the OpenCL
environment is configured on the host and how
kernels are executed on the device. This
includes defining a concurrency model used for
kernels execution on devices.

70
70

The OpenCL specificationThe OpenCL specification

— Memory model: defines the abstract memory
hierarchy that kernels use, regardless of the
actual underlying memory architecture. The
memory model closely resembles current GPU
memory hierarchies, although this has non
limited adoptability by other accelerators

— Programming model: defines how the
concurrency model is mapped to physical
hardware

71
71

Addition of the elements of two Addition of the elements of two
arraysarrays

Serial code:
void vecadd(int *C, int *A, int *B, int N)

{
for (int i=0; i<N; i++) {

C[i] = A[i] + B[i];
}

}

OpenCL Data Parallel

__kernel void vecadd(
__global int *C,
__global int *A,
__global int *B){

int tid = get_global_id(0); //OpenCL intrinsic function
C[tid] = A[tid] + B[tid];

}

72
72

Multiplication of the elements of two Multiplication of the elements of two
arraysarrays

Serial code:
void trad_mul(int n,

const float *a, const float *b, float *c)
{

int i; for (i=0; i<n; i++)
c[i] = a[i] * b[i];

}

OpenCL Data Parallel
kernel void

dp_mul(global const float *a,
global const float *b,
global float *c)

{int id = get_global_id(0);
c[id] = a[id] * b[id];

} // execute over “n” workitems

73
73

ND RangeND Range

 When a kernel is executed, the program
specifies the number of work-items that
should be created as an n-dimensional range
(NDRange). A NDRange is a one-, two- or
three-dimensional index space of work-items
that will often map to the dimensions of either
the input or the output data.

 The dimensions of the NDRange are specified
as an N-element array of type size_t, where N
represents the number of dimensions used to
describe the work-items being created:

 size_t indexSpaceSize[3] = [1024, 1, 1];

74
74

Work itemsWork items

 Achieving scalability comes from dividing the
work-items of an NDRange into smaller,
equally sized workgroups. An index space with
N dimensions requires workgroups to be
specified using the same N dimensions; thus a
three-dimensional index space requires
three-dimensional workgroups.

75
75

Work itemsWork items

 Work-items within a workgroup have a special
relationship with one other: they can perform
barrier operations to synchronize and they
have access to a shared memory address
space.

 Because workgroup sizes are fixed, this
communication doesn't have a need to scale
and hence does not affect scalability of a large
concurrent dispatch.

 For the vector addition example, the
workgroup size might be specified as

 size_t workGroupSize[3] = [64, 1, 1];

76
76

Work itemsWork items

 If the total number of work-items per array is
1024, this resulting in creating 16 workgroups
(1024 work-items/(64 work-items per worksgroup) = 16
workgroup)

 OpenCL requires that the index space sizes are
evenly divisible by the workgroup size in each
dimension

 For programs such as vector addition in which
work items behave independently (even within
a workgroup), OpenCL allows the local
workgroup size to be ignored by the
programmer and generated automatically by
the implementation. In this case the developer
will pass NULL instead.

77
77

Platform and devicesPlatform and devices

 The OpenCL platform model defines the roles
of the host and devices and provides an
abstract hardware model for devices.

 A device is composed by a set of compute
units, with each compute unit functionally
independent from the rest. Compute Units are
further divided into processing elements.

78
78

Platform and devicesPlatform and devices

 The platform device model closely
corresponds to the hardware model of some
GPUs.

 The API function clGetPlatformIDs() is used
to discover the set of available platform for a
given system

cl_int
clgetPlatformIDs(cl_uint num_entries,

 cl_platform_id *platforms,
 cl_uint *num_platforms)

79
79

ContextsContexts

 Before a host can request that a kernel be executed
on a device, a context must be configured on the host
that enables it to pass commands and data to the
device.

 In OpenCL a context is an abstract container that
exists on the host. A context coordinates the
mechanism for host-device interaction, manages the
memory objects that are available on the device, and
keeps track of the program and kernels that are
created for each device.

 The API function to create a context is
clCreateContext()
The properties argument is used to restict the scope
of the context

80
80

cl_context
clCreateContext(const cl_context_properties *properties,

 cl_uint *num_devices,
 const cl_device_id *devices,
 void (CL_CALLBACK *pfn_notify) (

const char *errinfo,
 const void *private_info,

size_t cb,
void *user_data),

 void *user_data,
 cl_int *errcode_ret)

ContextsContexts

 Limiting the the context to a given platform allows the
 programmer to provide the context for multiple
platforms and fully utilize a system comprising
resources from a mixture of vendors.

 Next, the number and IDs of the devices that the
programmer wants to associate with the context must
be supplied.

User callback
provided by the
user to report

sdditional error
informations that
may be generated
through its lifetime

81
81

ContextsContexts

 The OpenCL specification also provides an API call
that alleviates the need to build a list of devices.
clCreateContextFromType() allows a programmer to
create a context that automatically includes all
devices of the specified type (e.g. CPUs, GPUs, and all
devices).

 After creating a context the function
clGetContextInfo() can be used to query
information such as the number of devices present
and the device structures.

 In OpenCL, the process of discovering platforms and
devices and setting up a context is tedious. However,
after code to perform these steps is written once, it
can be reused for almost any project.

82
82

Command QueuesCommand Queues

 Communication with a device occurs by submitting
commands to a command queue.

 The command queue is the mechanism that the host
uses to request action by the device.

 Once the host decides which device to work with and
a context is created, one command queue needs to be
created per device (each command queue is
associated with only one device).

 Whenever the host needs an action to be performed
by a device, it will submit commands to the proper
command queue.

83
83

Command QueuesCommand Queues

 The API clCreateCommandQueue() is used to create a
command queue and to associate it to a device:

 Any API that specifies host-device interaction will
always begin with clEnqueue and require a command
queue as a parameter. For example the
clEnqueueReadBuffer() command requests that the
device send data to the host, and
clEnqueueNDRangeKernel() requests that a kernel is
executed on the device.

cl_command_queue
clCreateCommandQueue(cl_context context,

 cl_device_id device,
 cl_command_queue_properties properties,
 cl_int *errcode_ret)

84
84

EventsEvents

 Any operation that enqueues a command into a
command queue–-that is, any API call that begins with
clEnqueue—produces an event.

 Events have two main roles in OpenCL:
— Representing dependencies
— Providing mechanisms for profiling

 In addition to producing event objects, API calls that
begins with clEnqueue also take a “wait list” of events
as parameters. A clEnqueue call will block until all
events on its wait list have completed.

 By generating an event for one API call and passing it
as an argument to a successive call, OpenCl allows us
to represent dependencies.

85
85

Memory objectsMemory objects

 OpenCL applications often work with large arrays of
multidimensional matrices. These data need to be
physically present on a device before execution can
begin.

 In order for data to be transferred to a device, it must
first be encapsulated as a memory object. OpenCL
defines two types of memory objects: buffers and
images.

 Buffers are equivalent to arrays in c, created using
malloc(), where data elements are stored contiguously
in memory

 Images are designed as opaque objects, allowing for
data padding and other optimizations that may
improve performance on devices.

 A memory object is valid only within a sigle context.

86
86

Memory ObjectsMemory Objects

Buffers
 It may help to visualize a memory object as a pointer

that is valid on a device. This is similar to a call to
malloc in C, or a C++ new's operator.

 The API function clCreateBuffer() allocates the buffer
and returns a memory object:

 Creating a buffer requires supplying the size of the
buffer and a context in which the buffer will be
allocated; it is visible to all devices associated with
the context.

cl_mem clCreateBuffer(cl_context context,
 cl_mem_flags flags,
 size_t size,
 void *host_ptr,
 cl_int *errcode_ret)

87
87

Memory ObjectsMemory Objects

 Optionally, the caller can supply flags that specify that
the data is read-only, write-only, read-write. Other
flags allow to specify additional options for creating
and initializing a buffer. One simple option is to supply
a host pointer with data used to initialize the buffer.

 Data contained in host memory is transferred to and
from an OpenCL buffer using the command
clEnqueueWriteBuffer() and clEnqueueReadBuffer().

 If a kernel that is dependent from such a buffer is
executed on a GPU, the buffer may be transferred to
the device. The buffer is linked to a context, not to a
device, so it is the runtime that determines the
precise time the data is moved.

88
88

Memory ObjectsMemory Objects

 The API calls for reading and writing to buffers are very
similar.

 Similar to other enqueue operations, reading or writing a
buffer requires a command queue to manage the execution
schedule. The enqueue function requires the buffer, the
number of bytes to transfer, and an offset within the buffer.

 The blocking_write option should be set to CL_TRUE if the
transfer into an OpenCL buffer should complete before the
function returns – will block until operation has completed.

cl_int clEnqueueWriteBuffer(cl_command_queue command_queue,
 cl_mem buffer,
 cl_bool blocking_write,
 size_t offset,
 size_t cb,
 const void *ptr,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

89
89

Memory ObjectsMemory Objects

Images
 Images are a type of OpenCL memory object that

abstract the storage of physical data to allow for
device-specific optimization. They are not required to
be supported by all OpenCl devices, and an
application is required to check, using
clGetDeviceInfo() if they are supported or not.

 Unlike buffers, images cannot be directly referenced
as if they were arrays.

 Furthermore, adjacent data elements are not
guaranteed to be stored contiguously in memory.

 The purpose of using images is to allow the hardware
to take advantage of spatial locality and to utilize
hardware acceleration available on many devices.

90
90

Memory ObjectsMemory Objects

 The elements of an image are represented by a
format descriptor cl_image_format. The format
descriptor specifies how the image elements are
stored in memory based on the concept of channel.

 The channel order specifies the number of elements
that make up an image element (up to four elements,
based on the traditional RGBA pixels) and the channel
type specifies the size of each element.

 These elements can be sized from 1 to 4 bytes and in
various different formats (i.e. integer of floating point).

 Creating an OpenCL image is done using the
command clCreateImage2D() or clCreateImage3D()

 In addition are required the height and the width of
the image (and the depth in the 3D case).
Furthermore the image pitch (N. of Bytes between the start of
one image row and the start of the next) may be supplied if
inizialization data is provided.

91
91

Memory ObjectsMemory Objects

 There are also additional parameters when reading or
writing an image. Read or Write operations take three
element origin (similar to the buffer offset) that defines
the location within the image that the transfer will begin
and another three-element region parameter that
defines the extent of the data that will be transferred.

 Within a kernel images are accessed with built-in
functions specific of the data type, i.e.: read_imagef()
for floats and read_imageui() for unsigned integers.

cl_mem clCreateImage2D(cl_context context,
 cl_mem_flags flags,

 const cl_image_format *image_format,
 size_t image_width,
 size_t image_height,
 size_t image_row_pitch,
 void *host_ptr,
 cl_int *errcode_ret)

92
92

Flush and finishFlush and finish

 The flush and finish commands are two different types
of barrier operations for a command queue.

 The cl_Finish() function blocks until all the
commands in a command queue have completed; its
functionality is synonymous with a synchronization
barrier.

 The cl_Flush() function blocks until all the commands
in a command queue have been removed from the
queue.

 This means that the commands will definitely be
in-flight but will not necessarily have completed.

 cl_int clFlush(cl_command_queue command_queue);
 cl_int clFinish(cl_command_queue command_queue);

93
93

Creating an OpenCL Program ObjectCreating an OpenCL Program Object

 OpenCL C code, written to run on an OpenCL device,
is called a program. A program is a collection of
functions called kernels, where kernels are units of
execution that can be scheduled to run on a device.

 OpenCL programs are compiled at runtime through a
series of API calls. This runtime compilation gives the
system an opportunity to optimize for a specific
device.

 There is no need for an OpenCL application to have
been prebuilt against the vendor (NVIDIA,AMD, Intel)
runtimes.

 OpenCL software links only to a common runtime
layer (called the ICD); all platform-specific SDK
activity is delegated to a vendor runtime through a
dynamic library interface.

94
94

Creating an OpenCL Program ObjectCreating an OpenCL Program Object

 The process of creating a kernel is as follows:
— The OpenCL C source code is stored in a character string. If the

source code is stored in a file on a disk, it must be read into
memory and stored as a character array

— The source code is turned into a program object, cl_program,
by calling clCreateProgramWithSource()

— The program object is then compiled, for one or more OpenCL
devices, with clBuildProgram(). If there are compile errors,
they will be reported here.

 The precise binary representation used is very vendor
specific. In the AMD runtime there are two main classes of
devices: x86 CPUs and GPUs. For x86 CPUs clBuildProgram()
generates x86 instructions that can be directly executed on
the device. For the GPUs it will create AMD's GPU
intermediate language (IL) a high-level intermediate
language that represents a single work-item but that will be
just-in-time compiled for a specific GPU's architecture later,
generating a ISA (code for a specific instruction set
architecture). NVIDIA uses a similar approach (calling it PTX).

95
95

Creating an OpenCL Program ObjectCreating an OpenCL Program Object

 The advantage of using such an IL is to allow the GPU ISA
itself to change from one device or generation to another in
what is still a very rapidly developing architectural space.

 One additional feature of the build process is the ability to
generate both the final binary format and various
intermediate representations and serialize them (i.e.: write
them out to disk).

 As with most objects, OpenCL provides a function to return
information about program objects, clGetProgramInfo(). One
of the flags to this function is CL_PROGRAM_BINARIES, which
returns a vendor-specific set of binary objects generated by
clBuildProgram().

 In addition to clCreateProgramWithSource(), OpenCL
provides clCreateProgramWithBinary(), which takes a list of
binaries that matches its device list.

 The binaries are previously created using
clGetProgramInfo().

96
96

The OpenCL KernelThe OpenCL Kernel

 The final stage to obtain a cl_kernel object that can be used
to execute kernels on a device is to extract the kernel from
the cl_program. Extracting a kernel from a program is similar
to obtaining an exported function from a dynamic library.

 The name of the kernel that the program exports is used to
request it from the compiled program object. The name of
the kernel is passed to clCreateKernel(), along with the
program object, and the kernel object will be returned if the
program object was valid and the particular kernel is found.

 Unlike calling functions in regular C programs, we cannot
simply call a kernel by providing a list of arguments.

 Executing a kernel requires dispatching it through an
enqueue function. Due both to the syntax of C language and
to the fact that kernel arguments are persistent, we must
specify each kernel argument individually using the function
clSetKernelArgs().

97
97

The OpenCL KernelThe OpenCL Kernel
 clSetKernelArgs() takes a kernel object, an index specifying

the argument number, the size of the argument, and a
pointer to the argument. When a kernel is executed this
information is used to transfer arguments to the device.

 The type information in the kernel parameter list is then used
by the runtime to unbox the data to its appropriate type.

 After any required memory objects are transferred to the
device and the kernel arguments are set, the kernel is ready
to be executed.

 Requesting that a device begin executing a kernel is done
with the call:
cl_int clEnqueueNDRangeKernel(cl_command_queue command_queue,

 cl_kernel kernel,
 cl_uint work_dim,

 const size_t *global_work_offset,
 const size_t *global_work_size,
 const size_t *local_work_size,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

98
98

The OpenCL KernelThe OpenCL Kernel

 The work_dim parameter specifies the number of dimensions
in which work-items will be created

 The global_work_size parameter specifies the number of
work items in each dimension of the NDRange and
local_work_size specifies the number of work-items in each
dimension of the workgroups.

 The clEnqueueNDRangeKernel() call is asynchronous: it will
return immediately after the command is enqueued in the
command queue and likely before the kernel has even
started execution.

 Either clWaitForEvents() or clFinish() can be used to
block execution on the host until the kernel completes.

99
99

Memory ModelMemory Model

Memory subsystems vary greatly between computing platforms. For example.
All modern CPUs support automatic caching, althoughmany GPUs do not. To
support code portability, OpenCL's approach is to define an abstract memory
model that programmers can target when writing code and vendors can map
to their actual memory

These memory spaces are
 relevant within OpenCL
 programs. The keywords
 associated with each space
 can be used to specify
 where a variable should be
 created or where the data
 that it points to resides.

100
100

Memory ModelMemory Model

 Global memory is visible to all compute units on the device
(similar to the main memory on a CPU-based host system).
Whenever the data is transferred from the host to the device,
the data will reside in global memory. Any data that is to be
transferred back from the device to the host must also reside
in global memory.

 The keyword __global is added to a pointer declaration to
specify that data referenced by the pointer resides in global
memory.

 For example in the OpenCL C code shown as an example
(vector addition) __global float *A, the data pointed to by A
resides in global memory (although we will see that A
actually resides in private memory)

101
101

Memory ModelMemory Model

 Constant memory is designed for data where each
element is accessed simultaneously by all work-items.
Variables whose values never changes, also fall into this
category.

 Constant memory is modelled as part of the global
memory, so memory objects that are transferred to
global memory can be specified as constant.

 Data is mapped to constant memory by using the
__constant keyword.

 Local memory is a scratchpad memory whose address
space is unique to each compute device. It is common
for it to be implemented as on-chip memory, but there is
no requirement that this be the case.

 Local memory is modelled as being shared by a
workgroup. As such accesses may have much shorter
latency and much higher bandwidth then global memory.

102
102

Memory ModelMemory Model

 Calling clSetKernelArg() with a size, but no
argument, allow local memory to be allocated at
runtime, where a kernel parameter is defined as a
__local pointer (e.g.: __local float *shareData)

 Alternatively, arrays can be statically declared in local
memory by appending the keyword __local (e.g.:
__local float[64] sharedData), although this requires
specifying the array size at compile time.

 Private memory is memory that is unique to an
individual work-item. Local variables and non-pointer
kernel arguments are private by default. In practice,
these variables are mapped to registers, although
private arrays and any spilled registers are usually
mapped to an off-chip (i.e.: long latency) memory.

103
103

Memory ModelMemory Model

The memory spaces of OpenCL closely model those of
modern GPUs:

104
104

Writing kernelsWriting kernels

 OpenCL kernels are similar to C functions and can be
thought of as instances of a parallel map operation.

 The function body, like the mapped function, will be
executed once for every work-item created.

 Kernels begin with the keyword __kernel and must have
a return type of void.

 The argument list is as for a C function with the
additional requirement that the address space of any
pointer must be specified.

 Buffers can be declared in global memory (__global) or
constant memory (__constant).

 Images are assigned to global memory.
 Access qualifiers (__read_only, __write_only,

__read_write) can also be optionally specified because
they may allow for compiler and hardware optimizations.

105
105

Writing kernelsWriting kernels

 When programming for OpenCL devices, particularly
GPUs, performance may increase by using local memory
to cache data that will be used multiple times by
multiple work-items of the same workgroup.

 When developing a kernel, we can achieve this with an
explicit assignment from a global memory pointer to a
local memory pointer:

__kernel void cache(
__global float* data,
__global float* sharedData) {
int globalId = get_global_id(0);
int localId = get_local_id(0);
//cache data to local memory
sharedData[localId] = data[globalId];
……

}

106
106

Source code vector additionSource code vector addition

// This program implements a vector addition using OpenCL

// System includes
#include <stdio.h>
#include <stdlib.h>

// OpenCL includes
#include <CL/cl.h>

// OpenCL kernel to perform an elementwise
// add of two arrays
const char* programSource =
�__kernel \n �
�void vecadd(__global int *A, \n �
� __global int *B, \n �
� __global int *C) \n �
�{ \n �
� \n �
� // Get the workitem�s unique ID \n
� int idx = get_global_id(0); \n �
� \n �
� // Add the corresponding locations of \n �
� // 'A' and 'B', and store the result in 'C'. \n �
� C[idx] = A[idx] + B[idx]; \n �
�} \n �
;

int main() {
 // This code executes on the OpenCL host

 // Host data
 int *A = NULL; // Input array
 int *B = NULL; // Input array
 int *C = NULL; // Output array

 // Elements in each array
 const int elements = 2048;

107
107

Source code vector additionSource code vector addition

 // Compute the size of the data
 size_t datasize = sizeof(int)*elements;

 // Allocate space for input/output data
 A = (int*)malloc(datasize);
 B = (int*)malloc(datasize);
 C = (int*)malloc(datasize);
 // Initialize the input data
 for(int i = 0; i < elements; i++) {
 A[i] = i;
 B[i] = i;
 }

 // Use this to check the output of each API call
 cl_int status;

 //
 // STEP 1: Discover and initialize the platforms
 //

 cl_uint numPlatforms = 0;
 cl_platform_id *platforms = NULL;

 // Use clGetPlatformIDs() to retrieve the number of
 // platforms
 status = clGetPlatformIDs(0, NULL, &numPlatforms);

 // Allocate enough space for each platform
 platforms =
 (cl_platform_id*)malloc(
 numPlatforms*sizeof(cl_platform_id));

 // Fill in platforms with clGetPlatformIDs()
 status = clGetPlatformIDs(numPlatforms, platforms,
 NULL);

108
108

Source code vector additionSource code vector addition

 //
 // STEP 2: Discover and initialize the devices
 //

 cl_uint numDevices = 0;
 cl_device_id *devices = NULL;

 // Use clGetDeviceIDs() to retrieve the number of
 // devices present
 status = clGetDeviceIDs(
 platforms[0],
 CL_DEVICE_TYPE_ALL,
 0,
 NULL,
 &numDevices);

 // Allocate enough space for each device
 devices =
 (cl_device_id*)malloc(
 numDevices*sizeof(cl_device_id));

 // Fill in devices with clGetDeviceIDs()
 status = clGetDeviceIDs(
 platforms[0],
 CL_DEVICE_TYPE_ALL,
 numDevices,
 devices,
 NULL);

109
109

Source code vector additionSource code vector addition

 //
 // STEP 3: Create a context
 //

 cl_context context = NULL;

 // Create a context using clCreateContext() and
 // associate it with the devices
 context = clCreateContext(
 NULL,
 numDevices,
 devices,
 NULL,
 NULL,
 &status);

 //
 // STEP 4: Create a command queue
 //

 cl_command_queue cmdQueue;

 // Create a command queue using clCreateCommandQueue(),
 // and associate it with the device you want to execute
 // on
 cmdQueue = clCreateCommandQueue(
 context,
 devices[0],
 0,
 &status);

110
110

Source code vector additionSource code vector addition

 //
 // STEP 5: Create device buffers
 //

 cl_mem bufferA; // Input array on the device
 cl_mem bufferB; // Input array on the device
 cl_mem bufferC; // Output array on the device

 // Use clCreateBuffer() to create a buffer object (d_A)
 // that will contain the data from the host array A
 bufferA = clCreateBuffer(
 context,
 CL_MEM_READ_ONLY,
 datasize,
 NULL,
 &status);

 // Use clCreateBuffer() to create a buffer object (d_B)
 // that will contain the data from the host array B
 bufferB = clCreateBuffer(
 context,
 CL_MEM_READ_ONLY,
 datasize,
 NULL,
 &status);

 // Use clCreateBuffer() to create a buffer object (d_C)
 // with enough space to hold the output data
 bufferC = clCreateBuffer(
 context,
 CL_MEM_WRITE_ONLY,
 datasize,
 NULL,
 &status);

111
111

Source code vector additionSource code vector addition

 //
 // STEP 6: Write host data to device buffers
 //

 // Use clEnqueueWriteBuffer() to write input array A to
 // the device buffer bufferA
 status = clEnqueueWriteBuffer(
 cmdQueue,
 bufferA,
 CL_FALSE,
 0,
 datasize,
 A,
 0,
 NULL,
 NULL);

 // Use clEnqueueWriteBuffer() to write input array B to
 // the device buffer bufferB
 status = clEnqueueWriteBuffer(
 cmdQueue,
 bufferB,
 CL_FALSE,
 0,
 datasize,
 B,
 0,
 NULL,
 NULL);

112
112

Source code vector additionSource code vector addition

 //
 // STEP 7: Create and compile the program
 //

 // Create a program using clCreateProgramWithSource()
 cl_program program = clCreateProgramWithSource(
 context,
 1,
 (const char**)&programSource,
 NULL,
 &status);

 // Build (compile) the program for the devices with
 // clBuildProgram()
 status = clBuildProgram(
 program,
 numDevices,
 devices,
 NULL,
 NULL,
 NULL);

 //
 // STEP 8: Create the kernel
 //

 cl_kernel kernel = NULL;

 // Use clCreateKernel() to create a kernel from the
 // vector addition function (named "vecadd")
 kernel = clCreateKernel(program, "vecadd", &status);

113
113

Source code vector additionSource code vector addition

 //
 // STEP 8: Create the kernel
 //

 cl_kernel kernel = NULL;

 // Use clCreateKernel() to create a kernel from the
 // vector addition function (named "vecadd")
 kernel = clCreateKernel(program, "vecadd", &status);

 //
 // STEP 9: Set the kernel arguments
 //

 // Associate the input and output buffers with the
 // kernel
 // using clSetKernelArg()
 status = clSetKernelArg(
 kernel,
 0,
 sizeof(cl_mem),
 &bufferA);
 status |= clSetKernelArg(
 kernel,
 1,
 sizeof(cl_mem),
 &bufferB);
 status |= clSetKernelArg(
 kernel,
 2,
 sizeof(cl_mem),
 &bufferC);

114
114

Source code vector additionSource code vector addition

 //
 // STEP 10: Configure the workitem structure
 //

 // Define an index space (global work size) of work
 // items for
 // execution. A workgroup size (local work size) is not
 // required,
 // but can be used.
 size_t globalWorkSize[1];
 // There are 'elements' workitems
 globalWorkSize[0] = elements;

 //
 // STEP 11: Enqueue the kernel for execution
 //

 // Execute the kernel by using
 // clEnqueueNDRangeKernel().
 // 'globalWorkSize' is the 1D dimension of the
 // workitems
 status = clEnqueueNDRangeKernel(
 cmdQueue,
 kernel,
 1,
 NULL,
 globalWorkSize,
 NULL,
 0,
 NULL,
 NULL);

115
115

Source code vector additionSource code vector addition

 //
 // STEP 12: Read the output buffer back to the host
 //

 // Use clEnqueueReadBuffer() to read the OpenCL output
 // buffer (bufferC)
 // to the host output array (C)
 clEnqueueReadBuffer(
 cmdQueue,
 bufferC,
 CL_TRUE,
 0,
 datasize,
 C,
 0,
 NULL,
 NULL);

 // Verify the output
 bool result = true;
 for(int i = 0; i < elements; i++) {
 if(C[i] != i+i) {
 result = false;
 break;
 }
 }
 if(result) {
 printf("Output is correct\n");
 } else {
 printf("Output is incorrect\n");
 }

116
116

Source code vector additionSource code vector addition

 //
 // STEP 13: Release OpenCL resources
 //

 // Free OpenCL resources
 clReleaseKernel(kernel);
 clReleaseProgram(program);
 clReleaseCommandQueue(cmdQueue);
 clReleaseMemObject(bufferA);
 clReleaseMemObject(bufferB);
 clReleaseMemObject(bufferC);
 clReleaseContext(context);

 // Free host resources
 free(A);
 free(B);
 free(C);
 free(platforms);
 free(devices);
}

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64
	Diapositiva 65
	Diapositiva 66
	Diapositiva 67
	Diapositiva 68
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71
	Diapositiva 72
	Diapositiva 73
	Diapositiva 74
	Diapositiva 75
	Diapositiva 76
	Diapositiva 77
	Diapositiva 78
	Diapositiva 79
	Diapositiva 80
	Diapositiva 81
	Diapositiva 82
	Diapositiva 83
	Diapositiva 84
	Diapositiva 85
	Diapositiva 86
	Diapositiva 87
	Diapositiva 88
	Diapositiva 89
	Diapositiva 90
	Diapositiva 91
	Diapositiva 92
	Diapositiva 93
	Diapositiva 94
	Diapositiva 95
	Diapositiva 96
	Diapositiva 97
	Diapositiva 98
	Diapositiva 99
	Diapositiva 100
	Diapositiva 101
	Diapositiva 102
	Diapositiva 103
	Diapositiva 104
	Diapositiva 105
	Diapositiva 106
	Diapositiva 107
	Diapositiva 108
	Diapositiva 109
	Diapositiva 110
	Diapositiva 111
	Diapositiva 112
	Diapositiva 113
	Diapositiva 114
	Diapositiva 115
	Diapositiva 116

