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Moore's law

Source: Wikipedia



GPGPU Computing

● GPU computing or GPGPU “is the use of a 
GPU (graphics processing unit) to carry on 
general purpose scientific and engineering 
computing” [Nvidia].

Sapphire ATI Radeon HD 4550 
GPU

Nvidia TESLA GPU 



Heterogeneous Computing
● Heterogeneous Computing is the 

transparent use of all computational 
devices to carry out general purpose 
scientific and engineering computing.

The Arndale Board based on ARM Cortex-A15 
with Mali-T604 Samsung Exynos 5250 

development platform

Very promising 
architecture for 
hererogeneous 

computing: it is built 
on 32nm low-power 

HKMG (High-K 
Metal Gate), and 

features a dual-core 
1.7GHz mobile CPU 

built on ARM® 
Cortex™-A15 

architecture plus an 
integrated ARM 

Mali™-T604 GPU for 
increased 

performance density 
and energy efficiency 

Android 
and 

Ubuntu 
support



The future of Super Computing 
Centers: the MontBlanc EU project  

● Heterogeneous Computing and minimization of power 
consumption: the new HPC Center of the future!

MontBlanc 
selected the 

Samsung 
Exynos 5 

Processors

http://www.montblanc-project.eu



NVIDIA Tegra

Quad-core NVIDIA Tegra T3  based Embedded Toradex Colibri T30 Computer On Module, 
announced on January 31, 2012. The cores are ARM Cortex-A9. The GPU is a 520 ULP GeForce.

Audi had selected the Tegra T3 processor for its in-vehicle infotainment systems and digital 
instruments display. The processor has been integrated into Audi's entire line of vehicles 
worldwide, since 2013. The latest versions of the Tegra (K1 and X1) are revealing extremely 
interesting  capabilities for developing self-driving cars.

Linux 
support:
Linux for

Tegra 
(L4T)



General Purpose GPU 
Computing 

● GPUs are:
– cheap and powerful
– ready to use
– highly parallel (thousands of cores)
– suitable for SIMD applications

● SIMD architectures may help solving a large set of 
computational problems:
– Data Mining
– Cryptography
– Earth sciences
– Montecarlo simulations
– Astrophysics ….



GPU evolution vs. CPU 
evolution



GPUs

● GPUs are low cost devices available on the 
market

● Incredible performances
● Very fast developments
● SIMD architecture (the same as vector 

computers)
● Several problems are suitable to be solved 

using a SIMD approach



Applications on

● Criptography
● Linear Algebra
● Data mining
● Life sciences
● Scientific computing
● Signal theory
● Video processing



Computational Graphics

Formal Definition

The production of bitmap images based on data 
acquired from an external source or computed by 
means of a computational model

Phases
● Definition of the objects in the scene
● Image rendering

Graphic Pipeline
● Set of operations for the graphic rendering



Rendering operations
● Transfer of the scene description: the set of vertex 

defining the objects, the data associated to the scene 
illumination, the textures, the observer's point of view. 

● Vertex transformations: rotations, scaling and objects' 
translation

● Clipping: elimination of the  objects or parts of them not 
visible from the observer's point of view.

● Lighting and shading: evaluation of the interactions of the 
light sources with the shapes, evaluating their shadowing.

● Rasterization: generation of the bitmap image. 3D 
coordinates are transformed in 2D coordinates. Textures 
and other graphic effects are also applied.



GPU's evolution
● The Graphic Processing Unit is the device devoted to the carry out 

the rendering in the modern video boards 

● 1980: the first video chips with limited functions without 2D graphic 
capabilities

● 1985: the graphic chips were similar to CPUs, with some 
modifications (design and ISA). Expensive solution for promoting 
CAD applications.

● 1990: graphic chips integrated, dedicated and programmable (lower 
costs)

● Starting from 1995, 3D graphics performance issues emerged 
thanks  to the success of video games.

– Integrated graphic chips for 3D acceleration

– The OpenGL and DirectX specifications were released, hiding 
the complexity of programming 3D graphics accelerators

– The graphic pipeline started to be executed in the GPU



GPU's evolution
● In 2000 the shading operations (ability to perform 

operations which implement the graphic pipeline) are 
included in the GPU capabilities. 

    Types of shader:
– Vertex shading: manages and transforms the vertex positions 

in an object

– Pixel or fragment shading: manages the image pixels, 
enabling the texture mapping

– Geometrical shading: starting from the vertex of a given 
object builds more complex objects.

● Shading capabilities became programmable
– each shader were executed on dedicated units

– GPUs became flexible almost like CPUs



GPU's evolution

● The first General Purpose GPU Computing 
projects appear, which utilize the shading 
units on the vertices.

● The first examples were based on OpenGL 
APIs to define shaders on vertices which 
mapped the parallel general purpose program.

● The problem of load balancing the specialized 
shader units appear



GPU's evolution
● In 2005 the Unified Shader Model is introduced: 

the various types of shaders are defined using 
a common set of APIs.

● The compute units are all identical.
● In 2007 the concept of General Purpose GPU 

became a reality and was fully implemented:
– NVIDIA released Compute Unified Device 

Architecture (CUDA)

– AMD released Brook+
– These frameworks allow to use the compute 

devices of the GPU without using graphic APIs.



The multicore era

● In the same years (2005-2007) CPUs 
became multicore 

Intel Yonah (Core Duo) 
low-power dual core processor, 
introduced on January 2006
Intel Core i7-3920XM Processor 
Extreme Edition has 6 cores/12 
threads (Q4'12).

AMD Opteron 2212 introduced in 
August 2006. The first AMD dual 
core (Opteron 875) was released on 
April 2005.
AMD Opteron 6366 HE (Q4'12) has 
16 cores and high energy efficiency.



Transparent programming 
of heterogeneous devices

● In 2008 Khronos Compute Working Group released 
the  Open Computing Language (OpenCL)

OpenCL is the first open, royalty-free standard for 
cross-platform, parallel programming of modern 
processors found in personal computers, servers and 
hand-held/embedded devices. [Khronos].



Computer architectures

● SISD Single instruction on Single Data 

    (es. Architetture Von Neumann tradizionale)
● SIMD Single instruction on Multiple Data 

(es.Processori vettoriali)
● MISD Multiple instruction on Single Data                 

(es. Controller di volo dello Space Shuttle)
● MIMD Multiple instruction on Multiple Data              

(es. architetture moderne multicore: Xeon Clovertown)

Flynn taxonomy



SIMD

● Executes a single instruction set on different sets of data 
utilizing several computational units at the same time

● Instruction fetch and decode occur only once

● There is a single control unit (CU) which manages the 
instruction flow of a given program

Vector Processors: computational units which, after the 
instruction fetch and decode, execute it on the data stored in 
the vector registers. The load-store unit moves the data from 
the central memory to the vector registers and vice-versa



MIMD

● Executes different instructions simultaneously
● Each processor has its own CU
● Each processor may execute a task or part of it



GPU architecture

● GPU components:
– Host interface: connects  the device via PCIe bus 

to the Host and manages communications 
(instructions and data)

– Scalable Processor Array (SPA) execute the 
programmable operations using the 
(programmable) Texture Processor Cluster (TPC).

– Video RAM

NVIDIA G80 (2007)



Nvidia G80
● TPC contains: Geometry controller, two Streaming 

Multiprocessors (SM), Texture Unit and Streaming 
Multiprocessor Controller (SMC)

● In particular a SM contains:
– MT unit: multithreded instruction fetch and issue unit

– 8 Streaming Processor (SP): scalar computational units

– 2 Special Function Unit: used for calculating transcendental 
functions

– Cache of instructions

– Cache for constant memory

– Shared memory (16KB)

– 8192 registers (32 bit)



Nvidia G80

Texture Processor Cluster in chipset G80 and GT200



Vnidia G80



Nvidia G80

● VRAM or global memory: 80 GB/s.
– Max dimension:  512 MB

● Shared memory: 16 KB (1KB blocks) 400 times 
faster then VRAM.

● Registers or private memory: 600 times faster 
than VRAM



Nvidia Fermi 2011



Nvidia architecture

For details: http://www.nvidia.com/content/PDF/fermi_white_papers/

NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf



Instructions execution

● The instruction execution is organized in Threads.
● Each SM creates, manages, schedules and executes threads in 

groups of 32 threads named wraps.
● The threads of the same wrap start from the same program address 

but evolve independently
● The maximum in efficiency occurs when all threads of a wrap have the 

same path (no branch).
● Nvidia calls such architecture SIMT (Single Instruction Multiple Thread)

Details in OpenCL Programming Guide for the CUDA Architecture vers 
3.1.



OpenCL by Kronos Group

● Multi/Many Core Heterogeneous Computing Standard 

● Runs on several devices (CPU, GPU, DSP, etc)

● Cross vendor (nVidia, AMD, Intel, etc)

● Portable (Linux, Windows, MacOS)



OpenCL architecture

● Platform model: abstraction of computing devices 
managed by a single host

● Execution model: defines the instructions set to be 
executed by the OpenCL devices (kernel) and the  
instructions initializing and controlling the kernels' 
execution (host program).

● Memory model: defines the memory objects, types of 
memory and how the host and the devices access them.

● Programming model: defines the type of parallel 
execution performed (on data or on tasks).

● Framework model: set of APIs and C99 extensions to 
implement host and kernel programs.



The Platform model

The platform model defines the roles of the host 
and the devices and provides an abstract hardware 
model for devices



The execution model

● Host program: set of instructions which initialize 
and manage the execution environment of the 
Compute Device

● Kernel program: set of instructions executed by 
the Compute Devices

● The Host prepares the various kernels' execution
● Each Compute Device executes the kernel 
● Calculations are made by the Work-items (which 

are grouped in Work-groups) each work item 
executes the same program on different data 



The memory model
workgroup 1 workgroup N

Work-item scope

Work-group scope

Kernel  scope



The Framework model

● Extensions to C99:
– Vector data type
– Image data type
– Conformance to the IEEE-754 - IEEE Standard 

for Binary Floating-Point Arithmetic (ANSI/IEEE 
Std 754-1985)

– Memory objects
● Limitations respect C99:

– No recursion
– No standard libraries



A case study: AES
● The Advanced Encryption Standard (AES) algorithm  

plays a big role in the current  encryption 
communications and security technologies.

●  Standard FIPS-197

● The algorithm has been developed by Joan Daemen 
and Vincent Rijmen that submitted it with the ”Rindael” 
codename. 

● The algorithm is symmetric, iterate, block based.

● Data blocks of 128 bit, Keys of 128, 192 or 256 bits.

● Due to its characteristics, it can greatly benefit from a 
parallel implementation and in particular from a GPU 
implementation.



The AES algorithm

State = input

AddRoundKey ( State , RoundKey [ 0 ] )

for  r = 1 to rounds−1

      SubBytes ( State )

      ShiftRows ( State )
      MixColumns ( State )        

      AddRoundKey ( State , RoundKey [ r ] )

end

SubBytes ( State )

ShiftRows ( State )

AddRoundKey ( State , RoundKey [ rounds ] )

output = State

each byte of the state is combined 
with the round key using bitwise 
XOR       

a non­linear substitution step where each byte is    
replaced with another according to a lookup table

a mixing operation which operates on the columns of the state, 
          combining the four bytes in each column

a transposition step where each row of the state is shifted 
cyclically a certain number of steps.

each byte of the state is combined 
with the round key using bitwise 
XOR

a non­linear substitution step where each byte is    
replaced with another according to a lookup table

each byte of the state is combined 
with the round key using bitwise 
XOR

a transposition step where each row of the state is 
shifted cyclically a certain number of steps.



Implementation

● Read input file (plain text or ciphered)
● Read AES parameters
● Transfer memory objects to device global memory
● Key expansion
● Perform kernel on the OpenCl device
● Transfer memory objects from device global 

memory



Performance tests
● Hardware description

– ATI Firestream 9270 (vendor implementation of OpenCL)

– Nvidia GeForce 8600 GT (vendor implementation of OpenCL)

– CPU Intel Duo E8500  (AMD OpenCL driver)
Device ATI RV770
CL_DEVICE_TYPE: CL_DEVICE_TYPE_GPU
CL_DEVICE_MAX_COMPUTE_UNITS: 10
CL_DEVICE_MAX_WORK_ITEM_SIZES: 256 / 256 / 256
CL_DEVICE_MAX_WORK_GROUP_SIZE: 256
CL_DEVICE_MAX_CLOCK_FREQUENCY: 750 MHz
CL_DEVICE_IMAGE_SUPPORT: 0
CL_DEVICE_GLOBAL_MEM_SIZE: 512 MByte
CL_DEVICE_LOCAL_MEM_SIZE: 16 KByte
CL_DEVICE_MAX_MEM_ALLOC_SIZE: 256 Mbyte
CL_DEVICE_QUEUE_PROPERTIES: 
CL_QUEUE_PROFILING_ENABLE

Device Intel(R) Core(TM)2 Duo CPU E8500 @ 3.16GHz
CL_DEVICE_TYPE: CL_DEVICE_TYPE_CPU
CL_DEVICE_MAX_COMPUTE_UNITS: 2
CL_DEVICE_MAX_WORK_ITEM_SIZES: 1024 / 1024 / 
1024
CL_DEVICE_MAX_WORK_GROUP_SIZE: 1024
CL_DEVICE_MAX_CLOCK_FREQUENCY: 3166 MHz
CL_DEVICE_IMAGE_SUPPORT: 0
CL_DEVICE_GLOBAL_MEM_SIZE: 1024 MByte
CL_DEVICE_LOCAL_MEM_SIZE: 32 KByte
CL_DEVICE_MAX_MEM_ALLOC_SIZE: 512 MByte
CL_DEVICE_QUEUE_PROPERTIES: 
CL_QUEUE_PROFILING_ENABLE

Device GeForce 8600 GT
CL_DEVICE_TYPE: 
CL_DEVICE_TYPE_GPU
CL_DEVICE_MAX_COMPUTE_UNITS: 4
CL_DEVICE_MAX_WORK_ITEM_SIZES: 
512 / 512 / 64
CL_DEVICE_MAX_WORK_GROUP_SIZE: 
512
CL_DEVICE_MAX_CLOCK_FREQUENCY: 
1188 MHz
CL_DEVICE_IMAGE_SUPPORT: 1
CL_DEVICE_GLOBAL_MEM_SIZE: 255 
MByte
CL_DEVICE_LOCAL_MEM_SIZE: 16 
KByte
CL_DEVICE_QUEUE_PROPERTIES: 
CL_QUEUE_PROFILING_ENABLE



Performance tests



Performance tests

Ignoring the time spent  to copy data in memory



AES performance tests
Including the time spent  to copy data in memory



AES performance tests



OpenSSL library

● FLOSS Security since 1998
● SSL TSL Tookit
● Projects based on openssl:

– Apache (mod_ssl)

– OpenVPN

– SSH

     …..

An OpenSSL Engine based on OpenCL 

has been created  



Performance tests

● The performance tests have been carried out using the 
speed benchmark tool distributed with the openssl 
library.

● We used the following hardware:
– Intel T7300 Core 2 Duo a 2.00GHz, 2 GB RAM DDR2

– Intel i7 870 Quad Core (Hyperthreading) 3.0GHz,    4 GB di 
RAM DDR3

– Nvidia GTX 580  (16 Compute Units) 772MHz (512 Processing 
Element or Stream Processors at 1.5GHz) 1.5 GB VRAM 
DDR5

– Two versions of the algorithm have been impleted: Sbox 
defined in the Constant Memory and the same installed on the  
Global Memory.



Performance tests

Data processed as a function of the packet size



Performance tests

Speed-up of the same GPU running on 2 separate CPUs 



Performance tests
Measure of the data transfer from the host memory (RAM) to the device memory (VRAM) and vice-versa:

This is a measure of the overhead of the memory transfer



Performance tests

Speed-up of two variants of the algorithm 

(Sbox defined in Constant Memory or in Global memory)



Scheduling issues

● The impressive amount of resources available 
through the GPGPU approach addresses important 
issues related to the efficiency of scheduling of 
modern operating systems in hybrid architectures.

● Usually it is up to the user decide the type of device 
to use. This is resulting in an inefficient or 
inappropriate scheduling process and to a not 
optimized usage of hardware resources. 

● We are studying an H-system simulator to test 
scheduling algorithms for hybrid systems.



The simulator HPSim

● The model aims to simulate a H-system 
composed by:
– a set of processors (CPUs) and graphics cards 

(GPUs) used as compute units to execute 
heterogeneous jobs 

– a classifier selecting the type of compute device 
(CPU or GPU)  

– a scheduler which implements the policy to be 
evaluated.



The simulator HPSim

● The proposed CPU-GPU simulation model is 
defined in terms of:
– a set of state variables describing the system 

– Devices
– Jobs
– Queues
– Scheduler

– a state transition function which determines its 
progression through a finite set of discrete events



The simulator HPSim
● The simulator provides the following 

features:
– Creation of the user-specified hardware in terms of 

number of CPUs and GPUs.

– Generation of the system load, setting the number of jobs.

– Tuning of the inter-arrival Job time.

– Selection of the Job composition. It allows to specify the 
probability to generate a given number of Realtime, GPU 
User and CPU User Job.

– Setting Classifier simulation.

– Selection of qt strategy.



The simulator HPSim
● We are focusing our work on three main aspects

– We implemented a simple use-case considering a 
single non-preemptive priority queue. We are 
working to increase the possible cases.

– We are carrying out a study of inter-arrival of real 
systems and the implementation of the linux 
scheduler (CFS) to validate the simulator. 

– We are adding new features to the simulator: 
– New scheduling policies 
– Implementation of a graphic interface 
– Automatic tools for the generation of charts for the analysis of the 

performance of the scheduling strategies. 
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Parallel computingParallel computing

 Parallel Computing is a form of computation in 
which many calculations are carried out 
simultaneously, operating on the principle that 
large problems can often be divided into smaller 
ones, which are then solved concurrently (i.e. in 
parallel)

 The degree of parallelism that can be achieved is 
dependent on the inherent nature of the problem 
at hand, and the skill of the algorithm or 
software designer is to identify the forms of 
parallelism present in the underlying problem.   
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Multiplication of the elements of two Multiplication of the elements of two 
arraysarrays

 We carry out the multiplication of the elements of two vectors A 
and B, each with N elements, storing the result of each multiply 
in the corresponding array C
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Filtering a series of images using FFTFiltering a series of images using FFT

 There is an high task parallelism on a series of tasks operating 
together in a pipeline to compute the overall result
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Finding the occurrencies of a string in Finding the occurrencies of a string in 
a texta text

 We assume that the text body has been already parset in a set of 
N words. We divide the task of comparing the string against the 
N potential matches into N comparisons (i.e.: tasks), where each 
string of characters is matched against the text string.
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Finding the occurrencies of a string in Finding the occurrencies of a string in 
a texta text

 There is even further parallelism within  single comparison task, 
where a matching on a character-by-character basis presents a 
finer-grained degree of parallelism. We observe both data-level 
parallelism and task-level parallelism.

 Once the number of matches is determined, we need to 
accumulate them to determine the total number of occurrences. 
We can again exploit the parallelism in the “reduction tree” 
(required logN steps).
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ConcurrencyConcurrency

 Concurrency is concerned with two or more 
activities happening at the same time.

 We find concurrency in the real word every 
time we are thinking to something while doing 
something else with one's hands.

 When talking about concurrency in computer 
programming, we mean a single system 
performing multiple tasks independently.

 Although it is possible that concurrent tasks 
may be executed at the same time (i.e. in 
parallel) this is not a requirement.  
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 Parallelism is concerned with running two or 
more activities in parallel with the explicit goal 
of increasing the overall performances.

 Parallel programs must be concurrent, but 
concurrent programs need not be parallel. 

ParallelismParallelism
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ThreadsThreads

 A running program may consist of multiple 
sub-programs that maintain their own 
independent control flow and that are allowed 
to run concurrently. These subprograms are 
defined as threads. 

 Communication between threads is via 
updates and access to memory appearing in 
the same address space.

 Each thread has its own pool of local memory 
(variables), but all threads see the same set of 
 global variables.

 A simple analogy may be the main program 
that includes a set of subroutines
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ThreadsThreads

 Threads communicate with each other through 
global memory. This can require 
synchronization constructs to ensure that 
more than one thread is not updating the 
same global address.

 A memory consistency model is defined to 
manage load and store ordering.

 Mechanisms such as locks/semaphores are 
commonly used to control access to shared 
memory that is accessed by multiple tasks.

 There is a significant cost to supporting a fully 
consistent shared memory model in hardware. 
Shared buses become bottlenecks in the 
design.
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Message-passing communicationMessage-passing communication

 The message-passing communication model 
enables explicit intercommunication of a set of 
concurrent tasks that may use memory during 
computation.

 Tasks exchange data through communication 
by sending and receiving explicit messages.

 Data  transfer usually requires cooperative 
operations to be performed by each process. 
For example, a send operation must have a 
matching receive operation.

 The programmer is responsible for explicitly 
managing communications between tasks.  
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Different Grains of ParallelismDifferent Grains of Parallelism

 In parallel computing, granularity is a measure 
of the ratio of computation to communication.

 Periods of computation are typically separated 
from periods of communication by 
synchronization events.

 The grain of the parallelism is constrained by 
the inherent characteristics of the algorithms 
constituting the application.

 It is important that the parallel programmer 
selects the right granularity in order to rip the 
full benefits of the underlying platform, 
because choosing the right grain size can help 
to expose additional degree of parallelism.   
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Data sharing and synchronizationData sharing and synchronization

 If two applications do not share any data, they 
can run concurrently and even in parallel.

 If halfway through the execution of one 
application is generated a result that will be 
subsequently rwquired by the second 
application, then we have to introduce some 
form of synchronization into the system, and 
parallel execution becomes impossible.

 When running concurrent software data 
sharing and synchronization play a critical 
role.

 Explicit synchronization primitives such as 
barriers or locks may be used.
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The OpenCL specificationThe OpenCL specification

 The OpenCL specification is defined in 4 parts, 
called models:
— Platform model: specifies that there is one 

processor coordinating execution (the host) and 
one or more processors capable of executing 
OpenCL C code (the devices). It defines an 
abstract hardware model that is used by 
programmers when writing OpenCL C functions 
(called kernels) the execute on the devices.

— Execution model: defines how the OpenCL 
environment is configured on the host and how 
kernels are executed on the device. This 
includes defining a concurrency model used for 
kernels execution on devices.
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The OpenCL specificationThe OpenCL specification

— Memory model: defines the abstract memory 
hierarchy that kernels use, regardless of the 
actual underlying memory architecture. The 
memory model closely resembles current GPU 
memory hierarchies, although this has non 
limited adoptability by other accelerators

— Programming model: defines how the 
concurrency model is mapped to physical 
hardware
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Addition of the elements of two Addition of the elements of two 
arraysarrays

Serial code:
void vecadd(int *C, int *A, int *B, int N) 

{ 
for (int i=0; i<N; i++) {

C[i] = A[i] + B[i];
} 

}

OpenCL Data Parallel

__kernel void vecadd(
__global int *C,
__global int *A,
__global int *B){

int tid = get_global_id(0); //OpenCL intrinsic function
C[tid] = A[tid] + B[tid]; 

} 
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Multiplication of the elements of two Multiplication of the elements of two 
arraysarrays

Serial code:
void trad_mul(int n, 

const float *a, const float *b, float *c) 
{ 

int i; for (i=0; i<n; i++) 
c[i] = a[i] * b[i]; 

}

OpenCL Data Parallel
kernel void 

dp_mul( global const float *a, 
global const float *b, 
global float *c) 

{int id = get_global_id(0); 
c[id] = a[id] * b[id]; 

} // execute over “n” work­items
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ND RangeND Range

 When a kernel is executed, the program 
specifies the number of work-items that 
should be created as an n-dimensional range 
(NDRange). A NDRange is a one-, two- or 
three-dimensional index space of work-items 
that will often map to the dimensions of either 
the input or the output data.

 The dimensions of the NDRange are specified 
as an N-element array of type size_t, where N 
represents the number of dimensions used to 
describe the work-items being created:

 size_t indexSpaceSize[3] = [1024, 1, 1]; 
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Work itemsWork items

 Achieving scalability comes from dividing the 
work-items of an NDRange into smaller, 
equally sized workgroups. An index space with 
N dimensions requires workgroups to be 
specified using the same N dimensions; thus a 
three-dimensional index space requires 
three-dimensional workgroups. 
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Work itemsWork items

 Work-items within a workgroup have a special 
relationship with one other: they can perform 
barrier operations to synchronize and they 
have access to a shared memory address 
space.

 Because workgroup sizes are fixed, this 
communication doesn't have a need to scale 
and hence does not affect scalability of a large 
concurrent dispatch. 

 For the vector addition example, the  
workgroup size might be specified as 

  size_t workGroupSize[3] = [64, 1, 1]; 
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Work itemsWork items

 If the total number of work-items per array is 
1024, this resulting in creating  16 workgroups 
(1024 work-items/(64 work-items per worksgroup) = 16 
workgroup) 

 OpenCL requires that the index space sizes are 
evenly divisible by the workgroup size in each 
dimension

 For programs such as  vector addition in which 
work items behave independently (even within 
a workgroup), OpenCL allows the local 
workgroup size to be ignored by the 
programmer and generated automatically by 
the implementation. In this case the developer 
will pass NULL instead.  
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Platform and devicesPlatform and devices

 The OpenCL platform model defines the roles 
of the host and devices and provides an 
abstract hardware model for devices.

 A device is composed by a set of compute 
units, with each compute unit functionally 
independent from the rest. Compute Units are 
further divided into processing elements.
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Platform and devicesPlatform and devices

 The platform device model closely 
corresponds to the hardware model of some 
GPUs.

 The API function clGetPlatformIDs() is used 
to discover the set of available platform for a 
given system 

cl_int
clgetPlatformIDs(cl_uint num_entries,

  cl_platform_id *platforms,
  cl_uint *num_platforms)
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ContextsContexts

 Before a host can request that a kernel be executed 
on a device, a context must be configured on the host 
that enables it to pass commands and data to the 
device.

 In OpenCL a context is an abstract container that 
exists on the host. A  context coordinates the 
mechanism for host-device interaction, manages the 
memory objects that are available on the device, and 
keeps track of the program and kernels that are 
created for each device.

 The API function to create a context is 
clCreateContext()
The properties argument is used to restict the scope 
of the context
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cl_context
clCreateContext(const cl_context_properties *properties,

  cl_uint *num_devices,
  const cl_device_id *devices,
  void (CL_CALLBACK *pfn_notify) (

const char *errinfo,
  const void *private_info,

size_t cb,
void *user_data),

  void *user_data,
  cl_int *errcode_ret)

ContextsContexts

 Limiting the the context to a given platform allows the 
 programmer to provide the context for multiple 
platforms and fully utilize a system comprising 
resources from a mixture of vendors.

 Next, the number and IDs of the devices that the 
programmer wants to associate with the context must 
be supplied.

User callback 
provided by the
user to report

sdditional error
informations that 
may be generated 
through its lifetime
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 The OpenCL specification also provides an API call 
that alleviates the need to build a list of devices. 
clCreateContextFromType() allows a programmer to 
create a context that automatically includes all 
devices of the specified type (e.g. CPUs, GPUs, and all 
devices).

 After creating a context the function 
clGetContextInfo() can be used to query 
information such as the number of devices present 
and the device structures.

 In  OpenCL, the process of discovering platforms and 
devices and setting up a context is tedious. However, 
after code to perform these steps is written once, it 
can be reused for almost any project.
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 Communication with a device occurs by submitting 
commands to a command queue.

 The command queue is the mechanism that the host 
uses to request action by the device.

 Once the host decides which device to work with and 
a context is created, one command queue needs to be 
created per device (each command queue is 
associated  with only one device).

 Whenever the host needs an action to be performed 
by a device, it will submit commands to the proper 
command queue.
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 The API clCreateCommandQueue() is used to create a 
command queue and to associate it to a device: 

  Any API that specifies host-device interaction will 
always begin with clEnqueue and  require a command 
queue as a parameter. For example the 
clEnqueueReadBuffer() command requests that the 
device send data to the host, and 
clEnqueueNDRangeKernel() requests that a kernel is 
executed on the device.

cl_command_queue
clCreateCommandQueue(cl_context context,

  cl_device_id device,
  cl_command_queue_properties properties,
  cl_int *errcode_ret)
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 Any operation that enqueues a command into a 
command queue–-that is, any API call that begins with 
clEnqueue—produces an event.

 Events have two main roles in OpenCL:
— Representing dependencies
— Providing mechanisms for profiling

 In addition to producing event objects, API calls that 
begins with clEnqueue also take a “wait list” of events 
as parameters. A clEnqueue call will block until all 
events on its wait list have completed.

 By generating an event for one API call and passing it 
as an argument to a successive call, OpenCl allows us 
to represent dependencies.



85
85

Memory objectsMemory objects

 OpenCL applications often work with large arrays of 
multidimensional matrices. These data need to be 
physically present on a device before execution can 
begin.

 In order for data to be transferred to a device, it must 
first be encapsulated as a memory object. OpenCL 
defines two types of memory objects:  buffers and 
images.

 Buffers are equivalent to arrays in c, created using 
malloc(), where data elements are stored contiguously 
in memory

 Images are designed as opaque objects, allowing for 
data padding and other optimizations that may 
improve performance on devices.

 A memory object is valid only within a sigle context.
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Buffers
 It may help to visualize a memory object as a pointer 

that is valid on a device. This is similar to a call to 
malloc in C, or a C++ new's operator.

 The API function clCreateBuffer() allocates the buffer 
and returns a memory object:

 Creating a buffer requires supplying the size of the 
buffer and a context in which the buffer will be 
allocated; it is visible to all devices associated with 
the context.

cl_mem clCreateBuffer(cl_context context,
  cl_mem_flags flags,
  size_t size,
  void *host_ptr,
  cl_int *errcode_ret)
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 Optionally, the caller can supply flags that specify that 
the data is read-only, write-only, read-write. Other 
flags allow to specify additional options for creating 
and initializing a buffer. One simple option is to supply 
a host pointer with data used to initialize the buffer.

 Data contained in host memory is transferred to and 
from an OpenCL buffer using the command 
clEnqueueWriteBuffer() and  clEnqueueReadBuffer().

 If a kernel that is dependent from such a buffer is 
executed on a GPU, the buffer may be transferred to 
the device. The buffer is linked to a context, not to a 
device, so it is the runtime that determines the 
precise time the data is moved.
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 The API calls for reading and writing to buffers are very 
similar.

 Similar to other enqueue operations, reading or writing a 
buffer requires a command queue to manage the execution 
schedule. The enqueue function requires the buffer, the 
number of bytes to transfer, and an offset within the buffer.

 The blocking_write option should be set to CL_TRUE if the 
transfer into an OpenCL buffer should complete before the 
function returns – will block until operation has completed.

cl_int clEnqueueWriteBuffer(cl_command_queue command_queue,
  cl_mem buffer,
  cl_bool blocking_write,
  size_t offset,
  size_t cb,
  const void *ptr,
  cl_uint num_events_in_wait_list,
  const cl_event *event_wait_list,
  cl_event *event)
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Images
 Images are a type of OpenCL memory object that 

abstract the storage of physical data to allow for 
device-specific optimization. They are not required to 
be supported by all OpenCl devices, and an 
application is required to check, using 
clGetDeviceInfo() if they are supported or not.

 Unlike buffers, images cannot be directly referenced 
as if they were arrays.

 Furthermore, adjacent data elements are not 
guaranteed to be stored contiguously in memory.

 The purpose of using images is to allow the hardware 
to take advantage of spatial locality and to utilize 
hardware acceleration available on many devices. 
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 The elements of an image are represented by a 
format descriptor  cl_image_format. The format 
descriptor specifies how the image elements  are 
stored in memory based on the concept of channel.

 The channel order specifies the number of elements 
that make up an image element (up to four elements, 
based on the traditional RGBA pixels) and the channel 
type specifies the size of each element.

 These elements can be sized from 1 to 4 bytes and in 
various different formats (i.e. integer of floating point).

 Creating an OpenCL image is done using the 
command clCreateImage2D() or clCreateImage3D()

 In addition are required the height and the width of 
the image (and the depth in the 3D case). 
Furthermore the image pitch (N. of Bytes between the start of 
one image row and the start of the next) may be supplied if 
inizialization data is provided.
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 There are also additional parameters when reading or 
writing an image. Read or Write operations take  three 
element origin (similar to the buffer offset) that defines 
the location within the image that the transfer will begin 
and another three-element region parameter that 
defines the extent of the data that will be transferred. 

 Within  a kernel  images are accessed with built-in 
functions specific of the data type, i.e.: read_imagef() 
for floats and read_imageui() for unsigned integers.

cl_mem clCreateImage2D(cl_context context,
  cl_mem_flags flags,

               const cl_image_format *image_format,
  size_t image_width,
  size_t image_height,
  size_t image_row_pitch,
  void *host_ptr,
  cl_int *errcode_ret)
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 The flush and finish commands are two different types 
of barrier operations for a command queue.

 The cl_Finish() function blocks until all the 
commands in a command queue have completed; its 
functionality is synonymous with a synchronization 
barrier.

 The cl_Flush() function blocks until all the commands 
in a command queue have been removed from the 
queue.

 This means that the commands will definitely be 
in-flight but will not necessarily have completed.

    cl_int clFlush(cl_command_queue command_queue);
    cl_int clFinish(cl_command_queue command_queue); 
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 OpenCL C code, written to run on an OpenCL device, 
is called a program. A program is a collection of 
functions called kernels, where kernels are units of 
execution that can be scheduled to run on a device.

 OpenCL programs are compiled at runtime through a 
series of API calls. This runtime compilation gives the 
system an opportunity to optimize for a specific 
device.

 There is no need for an OpenCL application to have 
been prebuilt against the vendor (NVIDIA,AMD, Intel) 
runtimes. 

 OpenCL software links only to a common runtime 
layer (called the ICD); all platform-specific SDK 
activity is delegated to a vendor runtime through a 
dynamic library interface.
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 The process of creating a kernel is as follows:
— The OpenCL C source code is stored in a character string. If the 

source code is stored in a file on a disk, it must be read into 
memory and stored as a character array

— The source code is turned into a program object, cl_program, 
by calling clCreateProgramWithSource()

— The program object is then compiled, for one or more OpenCL 
devices, with clBuildProgram(). If there are compile errors, 
they will be reported here.

 The precise binary representation used is very vendor 
specific. In the AMD runtime there are two main classes of 
devices: x86 CPUs and GPUs. For x86 CPUs clBuildProgram() 
generates  x86 instructions that can be directly executed on 
the device. For the GPUs it will create AMD's GPU 
intermediate language (IL) a high-level intermediate 
language that represents a single work-item but that will be 
just-in-time compiled for a specific GPU's architecture later, 
generating a ISA (code for a specific instruction set 
architecture). NVIDIA uses a similar approach (calling it PTX).
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 The advantage of using such an IL is to allow the GPU ISA 
itself to change from one device or generation to another in 
what is still a very rapidly developing architectural space. 

 One additional feature of the build process is the ability to 
generate both the final binary format and various 
intermediate representations and serialize them (i.e.: write 
them out to disk). 

 As with most objects, OpenCL  provides a function to return 
information about program objects, clGetProgramInfo(). One 
of the flags to this function is CL_PROGRAM_BINARIES, which 
returns a vendor-specific set of binary objects generated by 
clBuildProgram().

 In addition to clCreateProgramWithSource(), OpenCL 
provides clCreateProgramWithBinary(), which takes a list of 
binaries that matches its device list.

 The binaries are previously created using 
clGetProgramInfo().
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 The final stage to obtain a cl_kernel object that can be used 
to execute kernels on a device is to extract the kernel from 
the cl_program. Extracting a kernel from a program is similar 
to obtaining an exported function from a dynamic library. 

 The name of the kernel that the program exports is used to 
request it from the compiled program object. The name of 
the kernel is passed to clCreateKernel(), along with the 
program object, and the kernel object will be returned if the 
program object was valid and the particular kernel is found.

 Unlike calling functions in regular C programs, we cannot 
simply call a kernel by providing a list of arguments.

 Executing a kernel requires dispatching it through an 
enqueue function. Due both to the syntax of C language and 
to the fact that kernel arguments are persistent, we must 
specify each kernel argument individually using the function 
clSetKernelArgs(). 
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 clSetKernelArgs() takes a kernel object, an index specifying 

the argument number, the size of the argument, and a 
pointer to the argument. When a kernel is executed this 
information is used to transfer arguments to the device.

 The type information in the kernel parameter list is then used 
by the runtime to unbox the data to its appropriate type.

 After any required memory objects are transferred to the 
device and the kernel arguments are set, the kernel is ready 
to be executed.

 Requesting that a device begin executing a kernel is done 
with the call: 
cl_int clEnqueueNDRangeKernel(cl_command_queue command_queue,

  cl_kernel kernel,
               cl_uint work_dim,

  const size_t *global_work_offset,
  const size_t *global_work_size,
  const size_t *local_work_size,
  cl_uint num_events_in_wait_list,
  const cl_event *event_wait_list,
  cl_event *event)
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 The work_dim parameter specifies the number of dimensions 
in which work-items will be created

 The global_work_size parameter specifies the number of 
work items in each dimension of the NDRange and 
local_work_size specifies the number of work-items in each 
dimension of the workgroups.

 The clEnqueueNDRangeKernel() call is asynchronous: it will 
return immediately after the command is enqueued in the 
command queue and likely before the kernel has even 
started execution.

 Either clWaitForEvents() or clFinish() can be used to 
block execution on the host until the kernel completes.
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Memory ModelMemory Model

Memory subsystems vary greatly between computing platforms. For example. 
All modern CPUs support automatic caching, althoughmany GPUs do not.  To 
support code portability, OpenCL's approach is to define an abstract memory 
model that programmers can target when writing code and vendors can map 
to their actual memory  

These memory spaces are 
 relevant within OpenCL 
 programs. The keywords 
 associated with each space
 can be used to specify 
 where a variable should be
 created or where the data
 that it points to resides.
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Memory ModelMemory Model

 Global memory is visible to all compute units on the device 
(similar to the main memory on a CPU-based host system). 
Whenever the data is transferred from the host to the device, 
the data will reside in global memory. Any data that is to be 
transferred back from the device to the host must also reside 
in global memory.

 The keyword __global is added to a pointer declaration to 
specify that data referenced by the pointer resides in global 
memory.

 For example in the OpenCL C code shown as an example 
(vector addition) __global float *A, the data pointed to by A 
resides in global memory (although we will see that A 
actually resides in private memory) 
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 Constant memory is designed for data where each 
element is accessed simultaneously by all work-items. 
Variables whose values never changes, also fall into this 
category.

 Constant memory is modelled as part of the global 
memory, so memory objects that are transferred to 
global memory can be specified as constant.

 Data is mapped to constant memory by using the 
__constant keyword.

 Local memory is a scratchpad memory whose address 
space is unique to each compute device. It is common 
for it to be implemented as on-chip memory, but there is 
no requirement that this be the case.

 Local memory is modelled as being shared by a 
workgroup. As such accesses may have much shorter 
latency and much higher bandwidth then global memory.
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 Calling clSetKernelArg() with a size, but no 
argument, allow local memory to be allocated at 
runtime, where a kernel parameter is defined as a 
__local pointer (e.g.: __local float *shareData)  

  Alternatively, arrays can be statically declared in local 
memory by appending the keyword __local (e.g.: 
__local float[64] sharedData), although this requires 
specifying the array size at compile time.

 Private memory is memory that is unique to an 
individual work-item. Local variables and non-pointer 
kernel arguments are private by default. In practice, 
these variables are mapped to registers, although 
private arrays and any spilled registers are usually 
mapped to an off-chip (i.e.: long latency) memory.  
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The memory spaces of OpenCL closely model those of 
modern GPUs:
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 OpenCL kernels are similar to C functions and can be 
thought of as instances of a parallel map operation.

 The function body, like the mapped function, will be 
executed once for every work-item created.

 Kernels begin with the keyword __kernel and must have 
a return type of void.

 The argument list is as for a C function with the 
additional requirement that the address space of any 
pointer must be specified.

 Buffers can be declared in global memory (__global) or 
constant memory  (__constant).

 Images are assigned to global memory.
 Access qualifiers (__read_only, __write_only, 

__read_write) can also be optionally specified because 
they may allow for compiler and hardware optimizations.
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 When programming for OpenCL devices, particularly 
GPUs, performance may increase by using local memory 
to cache data that will be used multiple times by 
multiple work-items of the same workgroup.

 When developing a kernel, we can achieve this with an 
explicit assignment from a global memory pointer to a 
local memory pointer:

__kernel void cache(
__global float* data,
__global float* sharedData) {
int globalId = get_global_id(0);
int localId = get_local_id(0);
//cache data to local memory
sharedData[localId] = data[globalId];
……

}
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// This program implements a vector addition using OpenCL

// System includes
#include <stdio.h>
#include <stdlib.h>

// OpenCL includes
#include <CL/cl.h>

// OpenCL kernel to perform an element­wise 
// add of two arrays                        
const char* programSource =
�__kernel                  \n                           �
�void vecadd(__global int *A, \n      �
�            __global int *B, \n       �
�            __global int *C) \n                        �
�{                                   \n                 �
�                                         \n            �
�   // Get the work­item�s unique ID     \n            
�   int idx = get_global_id(0);        \n               �
�                                 \n                    �
�   // Add the corresponding locations of  \n           �
�   // 'A' and 'B', and store the result in 'C'. \n     �
�   C[idx] = A[idx] + B[idx];                   \n      �
�}                                          \n          �
;

int main() {
    // This code executes on the OpenCL host
    
    // Host data
    int *A = NULL;  // Input array
    int *B = NULL;  // Input array
    int *C = NULL;  // Output array
    
    // Elements in each array
    const int elements = 2048;   
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    // Compute the size of the data 
    size_t datasize = sizeof(int)*elements;

    // Allocate space for input/output data
    A = (int*)malloc(datasize);
    B = (int*)malloc(datasize);
    C = (int*)malloc(datasize);
    // Initialize the input data
    for(int i = 0; i < elements; i++) {
        A[i] = i;
        B[i] = i;
    }

    // Use this to check the output of each API call
    cl_int status;  
     
    //­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
    // STEP 1: Discover and initialize the platforms
    //­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
    
    cl_uint numPlatforms = 0;
    cl_platform_id *platforms = NULL;
    
    // Use clGetPlatformIDs() to retrieve the number of 
    // platforms
    status = clGetPlatformIDs(0, NULL, &numPlatforms);
 
    // Allocate enough space for each platform
    platforms =   
        (cl_platform_id*)malloc(
            numPlatforms*sizeof(cl_platform_id));
 
    // Fill in platforms with clGetPlatformIDs()
    status = clGetPlatformIDs(numPlatforms, platforms, 
                NULL);
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    //­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
    // STEP 2: Discover and initialize the devices
    //­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ 
    
    cl_uint numDevices = 0;
    cl_device_id *devices = NULL;

    // Use clGetDeviceIDs() to retrieve the number of 
    // devices present
    status = clGetDeviceIDs(
        platforms[0], 
        CL_DEVICE_TYPE_ALL, 
        0, 
        NULL, 
        &numDevices);

    // Allocate enough space for each device
    devices = 
        (cl_device_id*)malloc(
            numDevices*sizeof(cl_device_id));

    // Fill in devices with clGetDeviceIDs()
    status = clGetDeviceIDs(
        platforms[0], 
        CL_DEVICE_TYPE_ALL,        
        numDevices, 
        devices, 
        NULL);
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   //­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
    // STEP 3: Create a context
    //­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ 
    
    cl_context context = NULL;

    // Create a context using clCreateContext() and 
    // associate it with the devices
    context = clCreateContext(
        NULL, 
        numDevices, 
        devices, 
        NULL, 
        NULL, 
        &status);

    //­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
    // STEP 4: Create a command queue
    //­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ 
    
    cl_command_queue cmdQueue;

    // Create a command queue using clCreateCommandQueue(),
    // and associate it with the device you want to execute 
    // on
    cmdQueue = clCreateCommandQueue(
        context, 
        devices[0], 
        0, 
        &status);
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    //­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
    // STEP 5: Create device buffers
    //­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ 
    
    cl_mem bufferA;  // Input array on the device
    cl_mem bufferB;  // Input array on the device
    cl_mem bufferC;  // Output array on the device

    // Use clCreateBuffer() to create a buffer object (d_A) 
    // that will contain the data from the host array A
    bufferA = clCreateBuffer(
        context, 
        CL_MEM_READ_ONLY,                         
        datasize, 
        NULL, 
        &status);

    // Use clCreateBuffer() to create a buffer object (d_B)
    // that will contain the data from the host array B
    bufferB = clCreateBuffer(
        context, 
        CL_MEM_READ_ONLY,                         
        datasize, 
        NULL, 
        &status);

    // Use clCreateBuffer() to create a buffer object (d_C) 
    // with enough space to hold the output data
    bufferC = clCreateBuffer(
        context, 
        CL_MEM_WRITE_ONLY,                 
        datasize, 
        NULL, 
        &status);
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    //­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
    // STEP 6: Write host data to device buffers
    //­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ 
    
    // Use clEnqueueWriteBuffer() to write input array A to
    // the device buffer bufferA
    status = clEnqueueWriteBuffer(
        cmdQueue, 
        bufferA, 
        CL_FALSE, 
        0, 
        datasize,                         
        A, 
        0, 
        NULL, 
        NULL);
    
    // Use clEnqueueWriteBuffer() to write input array B to 
    // the device buffer bufferB
    status = clEnqueueWriteBuffer(
        cmdQueue, 
        bufferB, 
        CL_FALSE, 
        0, 
        datasize,                                  
        B, 
        0, 
        NULL, 
        NULL);
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      //­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
    // STEP 7: Create and compile the program
    //­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ 
     
    // Create a program using clCreateProgramWithSource()
    cl_program program = clCreateProgramWithSource(
        context, 
        1, 
        (const char**)&programSource,                                 
        NULL, 
        &status);

    // Build (compile) the program for the devices with
    // clBuildProgram()
    status = clBuildProgram(
        program, 
        numDevices, 
        devices, 
        NULL, 
        NULL, 
        NULL);
   
    //­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
    // STEP 8: Create the kernel
    //­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ 

    cl_kernel kernel = NULL;

    // Use clCreateKernel() to create a kernel from the 
    // vector addition function (named "vecadd")
    kernel = clCreateKernel(program, "vecadd", &status);
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    //­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
    // STEP 8: Create the kernel
    //­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ 

    cl_kernel kernel = NULL;

    // Use clCreateKernel() to create a kernel from the 
    // vector addition function (named "vecadd")
    kernel = clCreateKernel(program, "vecadd", &status);

    //­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
    // STEP 9: Set the kernel arguments
    //­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ 
    
    // Associate the input and output buffers with the 
    // kernel 
    // using clSetKernelArg()
    status  = clSetKernelArg(
        kernel, 
        0, 
        sizeof(cl_mem), 
        &bufferA);
    status |= clSetKernelArg(
        kernel, 
        1, 
        sizeof(cl_mem), 
        &bufferB);
    status |= clSetKernelArg(
        kernel, 
        2, 
        sizeof(cl_mem), 
        &bufferC);
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    //­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
    // STEP 10: Configure the work­item structure
    //­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ 
    
    // Define an index space (global work size) of work 
    // items for 
    // execution. A workgroup size (local work size) is not 
    // required, 
    // but can be used.
    size_t globalWorkSize[1];    
    // There are 'elements' work­items 
    globalWorkSize[0] = elements;

    //­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
    // STEP 11: Enqueue the kernel for execution
    //­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ 
    
    // Execute the kernel by using 
    // clEnqueueNDRangeKernel().
    // 'globalWorkSize' is the 1D dimension of the 
    // work­items
    status = clEnqueueNDRangeKernel(
        cmdQueue, 
        kernel, 
        1, 
        NULL, 
        globalWorkSize, 
        NULL, 
        0, 
        NULL, 
        NULL);
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   //­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
    // STEP 12: Read the output buffer back to the host
    //­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ 
    
    // Use clEnqueueReadBuffer() to read the OpenCL output  
    // buffer (bufferC) 
    // to the host output array (C)
    clEnqueueReadBuffer(
        cmdQueue, 
        bufferC, 
        CL_TRUE, 
        0, 
        datasize, 
        C, 
        0, 
        NULL, 
        NULL);

    // Verify the output
    bool result = true;
    for(int i = 0; i < elements; i++) {
        if(C[i] != i+i) {
            result = false;
            break;
        }
    }
    if(result) {
        printf("Output is correct\n");
    } else {
        printf("Output is incorrect\n");
    }
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    //­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
    // STEP 13: Release OpenCL resources
    //­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ 
    
    // Free OpenCL resources
    clReleaseKernel(kernel);
    clReleaseProgram(program);
    clReleaseCommandQueue(cmdQueue);
    clReleaseMemObject(bufferA);
    clReleaseMemObject(bufferB);
    clReleaseMemObject(bufferC);
    clReleaseContext(context);

    // Free host resources
    free(A);
    free(B);
    free(C);
    free(platforms);
    free(devices);
}
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