Virtual Machines in Condor

Condor Project Computer Sciences Department University of Wisconsin-Madison

Virtual Machines

> Simulated hardware

performance

- Software in the VM thinks it's running on a normal machine
- > Efficient use of hardware resources
- > Distributed architectures are inherently complex:
 - Resources scattered all around the globe and are heterogeneous
 - Distributed administration: no centralized control
 - Efficient resource management is essential in those architectures in order to achieve high

- > Virtualization is a framework or methodology of dividing the resources of a computer into multiple execution environments, by applying one or more concepts or technologies such as hardware and software partitioning, time-sharing, partial or complete machine simulation, emulation, quality of service, and many others.
- Virtualized resources enable a more efficient resource management
- Each instance of such execution is called a Virtual Machine(VM)

Type 1 Hypervisor

DNDDR high throughput computing Type 2 Hypervisor

> Few advantages of Virtual Machines

- Hardened security
- Platform isolation
- Easy reconfiguration
- Better Reliability, Availability and Serviceability

> Virtual Machine Life Cycle

- Boot Up of the VM
- Running Job on VM
- Completion Job and Shutdown of the VM

> Virtual Machine Job

- Starting Boot Up of the VM
- Running VM On
- Completion Shutdown of the VM
- Result Modified VM image (Optional)

Virtual Machines

9

Benefits of Virtual Machines

- > Job sandboxing
- > Checkpoint and migration
- > Jobs with elevated privileges
- > Platform independence

Job Sandboxing

- > Protect machines from jobs
 - Both accidental and malicious damage
- Machine owners more willing to run unfamiliar jobs

Checkpoint and Migration

- State of entire VM (OS and all) is recorded
- > VM can be checkpointed for...
 - Failure recovery
 - Migration to other machines

Jobs with Elevated Privileges

- > Run as root or administrator user
- > Alter OS installation
- > Useful for automated testing of software like Condor

Platform Independence

- Jobs can run on more machines
- > Machines can run more jobs
- Linux jobs on Windows machines

- And vice versa

VM Image Provided By...

- > Machine Owner
 - Condor runs inside a VM
 - VM becomes a node in your Condor pool
- > Job Owner
 - VM universe
 - Condor runs a user-provided VM image

Condor in a VM

- > Run Condor in a VM
- > VM joins your pool
- > VM acts like any other node
- Condor in VM can gather information from host machine
 - E.g. load average, keyboard idle time

Condor in a VM

Config Settings

> Host config file

- VMP_VM_LIST = vm1.bar.edu, vm2.bar.edu
- HOSTALLOW_WRITE = \$(HOSTALLOW_WRITE), \ \$(VMP_VM_LSIT)

> VM config file

- VMP_HOST_MACHINE = foo.bar.edu
- START = (KeyboardIdle > 150) && \ (HOST_KeyboardIdle > 150)

VM Universe

- > The VM image is the job
- > Job output is the modified VM image
- > VMWare, KVM and Xen are supported
- > VM GAHP
 - Daemon used to condor_starter to interact with VM software

high throughput computing :

Condor Config File

- > VM_TYPE = <xen|kvm|vmware>
 - Indicate what VM software you have
 - This enables VM capabilities
 - > VM_MEMORY = 256

ONDOR

- Max memory all VMs can use
- > VM_MAX_NUMBER = 2
 - Max simultaneous VMs

Condor Config File

- > VM_NETWORKING = TRUE
 - Can the VM access the network?
- > VM_NETWORKING_TYPE = nat, bridge
 - Ways the VM access the network
- > VM_NETWORKING_DEFAULT_TYPE = nat
 - Default network access type
- > VM_SOFT_SUSPEND = True
 - Suspend VM in memory or write to disk?

Config File for VMWare

- - Networking type to appear in .vmx file
- > VMWARE_LOCAL_SETTINGS_FILE = \
 /path/to/file
 - Extra attributes to insert in .vmx file

Config File for Xen/KVM

- > LIBVIRT_XML_SCRIPT = \ \$(LIBEXEC)/libvirt_simple_script.awk
 - Optional callout to write libvirt XML description
- > VM_BRIDGE_SCRIPT = \
 vif-bridge bridge=xenbr0

ONDOR

- Script to set up networking
- XEN_BOOTLOADER = /usr/bin/pygrub
 - Xen only, when kernel included in disk image

30

Machine ClassAd

```
HasVM = True
VM AvailNum = 2
VM Memory = 256
VM Networking = True
VM Networking Types = "nat,bridge"
VM GAHP VERSION =
 "$VMGahpVersion..."
VM Type = "vmware"
```


- > universe = vm
- > executable = MyJob1
 - Executable only used for naming in condor_q display
- > vm_type = <vmware/kvm/xen>

> $vm_memory = 256$

- Units are megabytes

> vm_networking = <True/False>

- Does VM require a network interface?
- Some machines may not provide one
- > vm_networking_type = <nat/bridge>
 - Does VM require a specific type of network interface?
 - Some machines may not provide both types

- > vm_no_output_vm = \
 <True/False>
 - Should modified VM image be returned to user?
 - Some VM jobs may send results over the network

> vm_cdrom_files = a.txt, b.txt

- Files are mounted in VM as a CD-ROM image
- Allows you to use a VM image for many different jobs
- You can replace the list of files with a single ISO image

- - If True, files for CD-ROM image are transferred from submit machine to execute machine
 - If False, files are read from a shared filesystem on execute machine

> vm_checkpoint = <True/False>

- If True, Condor will checkpoint VM periodically and on eviction from execute machine
- Checkpoints stored on submit machine

VMWare Parameters

> vmware_dir = <path>

- Directory containing the VMWare VM image to be run

VMWare Parameters

- - A snapshot disk records only the changes from the original VM image
 - Saves network bandwidth and disk space on submit machine

VMWare Parameters

- - If True, files in vmware_dir are transferred from submit machine to execute machine
 - If False, files are read from a shared file system on execute machine

Xen/KVM Parameters

- > xen_disk = file1:dev1:perm1,\
 file2:dev2:perm2
- > kvm_disk = file1:dev1:perm1,\
 file2:dev2:perm2
 - The VM image is a list of disk image files, along with the devices they should be mapped to in the VM and the permissions they should have
 - The image files can be whole disks or disk partitions

Xen Parameters

xen_kernel = included The kernel is in the disk image file xen_kernel = /path/to/kernel

- Use the indicated kernel

Xen Parameters

> xen_kernel_params = <params>

- Append <params> to Xen kernel command line
- > xen_root = <device>
 - Indicates root disk when kernel not included in disk image
- > xen_initrd = <path>

ONDOR

- Path to ramdisk image to be used

Xen/KVM Parameters

- > xen_cdrom_device = <device>
- > kvm_cdrom_device = <device>
 - When using vm_cdrom_files, you must specify what device the CD-ROM image will be mapped to

Xen/KVM Parameters

- > xen_transfer_files = file1, file2
- > kvm_transfer_files = file1, file2
 - Xen-related files to be transferred from the submit machine to the execute machine
 - Any VM image files not listed are assumed to accessible on the execute machine

Checkpointing and Networking

- > VM's MAC and IP address are saved across checkpoint and restart
- > Network connections may be lost
 - If NAT networking is used and job changes machines
 - If job is idle for too long before restart
- VMWare provides a tool to maintain DHCP leases across checkpoint and restart

VM Checkpointing vs. Standard Universe

- > No relinking
- > Works with more types of jobs
 - Multiple processes and threads
 - Networking (but migration problematic)
- > No Remote IO
 - Must specify input files

Creating a VM Image

> Configure OS to ...

- Run your application on boot-up
- Shut down when your application exits
- > Input files can be read from CD-ROM image
 - Input files can include application binary

Running in the VM

- > Sample boot script on linux
 - /etc/rc.d/rc3.d/S90myjob: #!/bin/sh su - joe ~/myjob 123 >~/output shutdown -h now

How to Create VM images

> VMware Server

- Using VMware Server Console

How to Create VM images

- > VMware Server
 - Can download pre-created VMs from http://www.vmware.com/appliances/
 - Many Linux distributions: Ubuntu, Fedora, Red Hat Enterprise, openSUSE, CentOS

How to Create VM images

- > Xen and KVM
 - Several Linux distributions have GUI or command line tool to create a VM image
 - On Fedora Core, virt-install and virt-manager
 - On OpenSuse, through YaST
 - Can create a VM from scratch by using dd, mke2fs, and mount -o loop

Small VM Images

> Damn Small Linux

- www.damnsmalllinux.org
- As small as 6MB
- > LitePC
 - www.litepc.com
 - Windows 2000 in 150MB
 - Windows 9x in 40MB

Thank You

- > Any questions?
- Several VM-related talks on Wednesday
- > Discussion: Virtual Machines and Condor
 - Friday, 11:30-12:15

